High Diversity of Novel Viruses in the Tree Pathogen Revealed by High-Throughput Sequencing of Total and Small RNA.

Front Microbiol

Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia.

Published: June 2022

, an oomycete pathogen causing root and trunk rot of different tree species in Asia, was shown to harbor a rich diversity of novel viruses from different families. Four isolates collected from in a semi-natural montane forest site in Vietnam were investigated for viral presence by traditional and next-generation sequencing (NGS) techniques, i.e., double-stranded RNA (dsRNA) extraction and high-throughput sequencing (HTS) of small RNAs (sRNAs) and total RNA. Genome organization, sequence similarity, and phylogenetic analyses indicated that the viruses were related to members of the order and families , , , and the proposed family "Fusagraviridae." The study describes six novel viruses: Phytophthora castaneae RNA virus 1-5 (PcaRV1-5) and Phytophthora castaneae negative-stranded RNA virus 1 (PcaNSRV1). All six viruses were detected by sRNA sequencing, which demonstrates an active RNA interference (RNAi) system targeting viruses in . To our knowledge, this is the first report of viruses in and the whole major Clade 5, as well as of the activity of an RNAi mechanism targeting viral genomes among Clade 5 species. PcaRV1 is the first megabirnavirus described in oomycetes and the genus .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244493PMC
http://dx.doi.org/10.3389/fmicb.2022.911474DOI Listing

Publication Analysis

Top Keywords

novel viruses
12
diversity novel
8
high-throughput sequencing
8
phytophthora castaneae
8
rna virus
8
viruses
7
rna
6
high diversity
4
viruses tree
4
tree pathogen
4

Similar Publications

Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China.

BMC Genomics

December 2024

The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China.

The H3 subtype of avian influenza virus (AIV) stands out as one of the most prevalent subtypes, posing a significant threat to public health. In this study, a novel triple-reassortant H3N3 AIV designated A/chicken/China/16/2023 (H3N3), was isolated from a sick chicken in northern China. The complete genome of the isolate was determined using next-generation sequencing, and the AIV-like particles were confirmed via transmission electron microscopy.

View Article and Find Full Text PDF

A novel herpesvirus in blue penguins putatively associated with myocardial degeneration and necrosis.

J Vet Diagn Invest

December 2024

Zoological Health Program, Wildlife Conservation Society, Bronx Zoo, Bronx, NY, USA.

We identified a novel herpesvirus in 2 deceased captive blue penguins (). Moderate-to-severe myocardiocyte atrophy and necrosis, and eosinophilic intranuclear inclusion bodies (INIBs), were seen in myocardiocytes in one bird; reticuloendothelial (RE) cell INIBs and multifocal RE cell necrosis were seen in both birds. The histologic findings were suggestive of viral infection.

View Article and Find Full Text PDF

VZV IE4 downregulates cellular surface MHC-I via sequestering it to the Golgi complex.

Cell Mol Life Sci

December 2024

Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.

Varicella-zoster virus (VZV) infection downregulates surface major histocompatibility complex class I (MHC-I) expression and retains MHC-I in the Golgi complex of infected cells. However, the underlying mechanism is not fully understood. The VZV IE4 protein is a multifunctional protein that is essential for VZV infection.

View Article and Find Full Text PDF

The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.

View Article and Find Full Text PDF

Background: COVID-19, caused by SARS-CoV-2, has had a significant impact on global health. While the virus primarily affects the respiratory system, the intricate interplay between immune cells and the virus remains poorly understood. This study investigates the causal relationship between 731 immune cell phenotypes and COVID-19 using Mendelian randomization analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!