An efficient substrate-configuration p-i-n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9-carbazol-9-yl)ethyl]phosphonic acid monolayer as a hole-selective contact. A triple-cation perovskite is used as the absorber layer. Thermally evaporated C and atomic layer deposited SnO layers serve to create an electron-selective contact. The cells use an ITO top electrode with an antireflective MgF coating. The optimized cell fabricated on a polymer-coated steel substrate reaches a power conversion efficiency of 16.5%, which approaches the 18.4% efficiency of a p-i-n reference superstrate-configuration cell that uses a similar stack design. Optical simulations suggest that the remaining optical losses are due to the absorption of light by the ITO top electrode, the C layer, the Ti bottom electrode, and reflection from the MgF coating in almost equal amounts. The major loss is, however, in the fill factor as a result of an increased sheet resistance of the top ITO electrode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241001 | PMC |
http://dx.doi.org/10.1021/acsaem.2c00291 | DOI Listing |
Adv Mater
January 2025
Michael Grätzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
Carbon-based printable mesoscopic solar cells (p-MPSCs) offer significant advantages for industrialization due to their simple fabrication process, low cost, and scalability. Recently, the certified power conversion efficiency of p-MPSCs has exceeded 22%, drawing considerable attention from the community. However, the key challenge in improving device performance is achieving uniform and high-quality perovskite crystallization within the mesoporous structure.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.
View Article and Find Full Text PDFChemphyschem
January 2025
Department of Physics, Yingbin Road 688, Jinhua, CHINA.
Undesirable loss of open-circuit voltage and current of metal halide perovskite (MHP) solar cells are closely associated with defects, so theoretical calculations have been often performed to scrutinize the nature of defects in bulk of MHPs. Yet, exploring the properties of defects at surfaces of MHPs is severely lacking given the complexity of the surface defects with high concentrations. In this study, IPb (PbI) antisite defects, namely one Pb (I) site being occupied by one I (Pb) atom at the surfaces of the FAPbI3 (FA = CH(NH2)2) material, are found to create electron (hole) traps when the surfaces with IPb (PbI) antisite defects are negatively (positively) charged.
View Article and Find Full Text PDFSci Adv
January 2025
Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China.
The utilization of low-dimensional perovskites (LDPs) as interlayers on three-dimensional (3D) perovskites has been regarded as an efficient strategy to enhance the performance of perovskite solar cells. Yet, the formation mechanism of LDPs and their impacts on the device performance remain elusive. Herein, we use dimensional engineering to facilitate the controllable growth of 1D and 2D structures on 3D perovskites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.
Recent progress in inverted perovskite solar cells (IPSCs) mainly focused on NiO modification and perovskite (PVK) regulation to enhance efficiency and stability. However, most works address only monofunctional modifications, and identical molecules with the ability to simultaneously optimize NiO interface and perovskite bulk phase have been rarely reported. This work proposes a dual modification approach using 4-amino-3,5-dichlorobenzotrifluoride (DCTM) to optimize both NiO upper interfaces and reduction of bulk defects in perovskite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!