A Pan-Cancer Analysis Revealing the Dual Roles of Lysine (K)-Specific Demethylase 6B in Tumorigenesis and Immunity.

Front Genet

Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China.

Published: June 2022

AI Article Synopsis

  • KDM6B, an epigenetic enzyme, plays a crucial role in cancer development, and its effects were studied across 33 different cancer types using various bioinformatics databases.
  • KDM6B showed downregulation in 11 cancer types and upregulation in five; in specific cancers like kidney and ovarian, its levels significantly correlated with cancer stage.
  • High KDM6B levels were linked to poor overall survival in thyroid carcinoma, while low levels were tied to worse outcomes in kidney cancer, emphasizing its potential as a prognostic indicator.

Article Abstract

Epigenetic-targeted therapy has been increasingly applied in the treatment of cancers. Lysine (K)-specific demethylase 6B (KDM6B) is an epigenetic enzyme involved in the coordinated control between cellular intrinsic regulators and the tissue microenvironment whereas the pan-cancer analysis of KDM6B remains unavailable. The dual role of KDM6B in 33 cancers was investigated based on the GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) databases. TIMER2 and GEPIA2 were applied to investigate the KDM6B levels in different subtypes or stages of tumors. Besides, the Human Protein Atlas database allowed us to conduct a pan-cancer study of the KDM6B protein levels. GEPIA2 and Kaplan-Meier plotter were used for the prognosis analysis in different cancers. Characterization of genetic modifications of the KDM6B gene was analyzed by the cBioPortal. DNA methylation levels of different KDM6B probes in different TCGA tumors were analyzed by MEXPRESS. TIMER2 was applied to determine the association of the KDM6B expression and immune infiltration and DNA methyltransferases. Spearman correlation analysis was used to assess the association of the KDM6B expression with TMB (tumor mutation burden) and MSI (microsatellite instability). The KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis and GO (Gene ontology) enrichment analysis were used to further investigate the potential mechanism of KDM6B in tumor pathophysiology. KDM6B was downregulated in 11 cancer types and upregulated across five types. In KIRC (kidney renal clear cell carcinoma) and OV (ovarian serous cystadenocarcinoma), the KDM6B level was significantly associated with the pathological stage. A high level of KDM6B was related to poor OS (overall survival) outcomes for THCA (thyroid carcinoma), while a low level was correlated with poor OS and DFS (disease-free survival) prognosis of KIRC. The KDM6B expression level was associated with TMB, MSI, and immune cell infiltration, particularly cancer-associated fibroblasts, across various cancer types with different correlations. Furthermore, the enrichment analysis revealed the relationship between H3K4 and H3K27 methylation and KDM6B function. Dysregulation of the DNA methyltransferase activity and methylation levels of H3K4 and H3K27 may involve in the dual role of KDM6B in tumorigenesis and development. Our study offered a relatively comprehensive understanding of KDM6B's dual role in cancer development and response to immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246050PMC
http://dx.doi.org/10.3389/fgene.2022.912003DOI Listing

Publication Analysis

Top Keywords

kdm6b
16
dual role
12
kdm6b expression
12
pan-cancer analysis
8
lysine k-specific
8
k-specific demethylase
8
role kdm6b
8
methylation levels
8
association kdm6b
8
enrichment analysis
8

Similar Publications

Background: Chronic low-grade inflammation in obesity is linked to white adipose tissue (WAT) dysfunction. Plasma lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), triggering NF-κB and worsening these disturbances. Previously, we showed that histone H3 lysine 27 (H3K27) epigenetic modifications affect WAT gene expression in high-fat-diet mice, identifying key pathways in adipose-derived stem cells (ASCs).

View Article and Find Full Text PDF

Genetic Heterogeneity in Four Probands Reveals , , and Related Neurodevelopmental Disorders.

Biomedicines

November 2024

Translational Genomics Laboratory, Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan.

: Neurodevelopmental disorders of genetic etiology are a highly diverse set of congenital recurrent complications triggered by irregularities in the basic tenets of brain development. : We present whole exome sequencing analysis and expression characteristics of the probands from four unrelated Pakistani consanguineous families with facial dysmorphism, neurodevelopmental, ophthalmic, auditory, verbal, psychiatric, behavioral, dental, and skeletal manifestations otherwise unexplained by clinical spectrum. : Whole exome sequencing identifies a novel, bi-allelic, missense variant in the gene [NM_152419.

View Article and Find Full Text PDF

Senescence and osteogenic differentiation potential loss limited bone nonunion treatment effects of bone marrow-derived mesenchymal stem cells (BMSCs). MiR-100-5p/Lysine(K)-specific demethylase 6B (KDM6B) can inhibit osteogenesis, but their effects on bone union remain unclear. This study aims to investigate the effects of miR-100-5p/KDM6B on osteogenic differentiation and bone defects.

View Article and Find Full Text PDF

In obesity, C-C chemokine ligand 2 (CCL2) plays a critical role in recruiting macrophages to white adipose tissue (WAT), contributing to chronic inflammation. In this study, we sought to explore the effects of fish oil (FO) on CCL2 expression and histone (H3K27)-modifying enzymes in both human model of preadipocytes and primary adipose-derived stem cells (ASCs). Present findings in preadipocytes lineage evidenced that lipopolysaccharide (LPS) increased (∼5.

View Article and Find Full Text PDF

JMJD3 deficiency disturbs dopamine biosynthesis in midbrain and aggravates chronic inflammatory pain.

Acta Neuropathol Commun

December 2024

Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.

Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!