Inhibition of GSDMD Activates Poly(ADP-ribosyl)ation and Promotes Myocardial Ischemia-Reperfusion Injury.

Oxid Med Cell Longev

Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Published: July 2022

The precise control of cardiomyocyte viability is imperative to combat myocardial ischemia-reperfusion injury (I/R), in which apoptosis and pyroptosis putatively contribute to the process. Recent researches indicated that GSDMD is involved in I/R as an executive protein of pyroptosis. However, its effect on other forms of cell death is unclear. We identified that GSDMD and GSDMD-N levels were significantly upregulated in the I/R myocardium of mice. Knockout of GSDMD conferred the resistance of the hearts to reperfusion injury in the acute phase of I/R but aggravated reperfusion injury in the chronic phase of I/R. Mechanistically, GSDMD deficiency induced the activation of PARylation and the consumption of NAD and ATP, leading to cardiomyocyte apoptosis. Moreover, PJ34, a putative PARP-1 inhibitor, reduced the myocardial injury caused by GSDMD deficiency. Our results reveal a novel action modality of GSDMD in the regulation of cardiomyocyte death; inhibition of GSDMD activates PARylation, suggesting the multidirectional role of GSDMD in I/R and providing a new theory for clinical treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249530PMC
http://dx.doi.org/10.1155/2022/1115749DOI Listing

Publication Analysis

Top Keywords

inhibition gsdmd
8
gsdmd activates
8
myocardial ischemia-reperfusion
8
ischemia-reperfusion injury
8
gsdmd
8
reperfusion injury
8
phase i/r
8
gsdmd deficiency
8
i/r
6
injury
5

Similar Publications

Introduction: Dl-3-n-butylphthalide (NBP), a small molecular compound extracted from celery seeds, has been shown to exhibit diverse pharmacological activities, including anti-inflammatory, antioxidative, and anti-apoptotic effects. Recent studies have highlighted its efficacy in treating various cardiovascular conditions, such as myocardial infarction, hypertrophy, heart failure, and cardiotoxicity. This study aimed to investigate whether NBP could alleviate cardiac dysfunction and injury following hemorrhage-induced cardiac arrest (HCA) in a porcine model and elucidate its potential mechanisms.

View Article and Find Full Text PDF

Objective: Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

E. coli Nissle 1917 improves gut microbiota composition and serum metabolites to counteract atherosclerosis via the homocitrulline/Caspase 1/NLRP3/GSDMD axis.

Int J Med Microbiol

December 2024

Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Article Synopsis
  • The probiotic E. coli Nissle 1917 (EcN) was studied for its effects on atherosclerosis in mice fed a high-fat diet, revealing its potential to alleviate disease progression.
  • EcN treatment reduced atherosclerotic plaque formation, improved cholesterol levels, and inhibited the expression of pyroptosis-related proteins linked to inflammation.
  • Further analysis showed that EcN regulated gut microbiota and metabolite levels, suggesting a mechanism for its beneficial effects, although antibiotics partially reversed these outcomes.
View Article and Find Full Text PDF

Background: Periodontitis and diabetes are chronic diseases where inflammation plays a central role, with each condition exacerbating the other. Pyroptosis, an inflammatory form of programmed cell death, is implicated in periodontitis and diabetes. The activation of gasdermin D (GSDMD), a key mediator of pyroptosis, promotes cytokine release and perpetuates tissue destruction in both.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!