Reducing salt intake can mitigate the prevalence of metabolic disorders. In fermented foods such as cheeses, however, salt can impact the activity of desirable and undesirable microorganisms and thus affect their properties. This study aimed to investigate the effect of salt level on Swiss-type cheese ripening. Since proteolysis is a major event in cheese ripening, three strains of were selected on the cell-envelope proteinase (CEP) they harbor. Their proteolytic activity on caseins was studied at six salt levels (0-4.5%) at pH 7.5 and 5.2. Swiss-type cheeses were manufactured at regular, increased, and decreased salt concentrations, and characterized for their composition and techno-functional properties. strains possessed and expressed the expected CEPs, as shown by PCR and shaving experiments. The two strains of that possessed at least the CEP PrtH3 showed the greatest proteolytic activity. Casein hydrolysis was similar or higher at pH 5.2, i.e., cheese pH, compared to pH 7.5, and slightly decreased at the highest salt concentrations (3.0 and 4.4%). Similarly, in ripened cheeses, these strains showed 1.5-2.4 more proteolysis, compared to the cheeses manufactured without . Regarding the salt effect, the 30% salt-reduced cheeses showed the same proteolysis as regular cheeses, while the upper-salted cheeses showed a slight decrease (-14%) of the non-protein fraction. The microbial and biochemical composition remained unchanged in the 30%-reduced cheeses. In contrast, , used as ripening bacteria in Swiss cheese, grew more slowly in upper-salted (1.14%, w/w) cheeses, which induced concomitant changes in the metabolites they consumed (-40% lactic acid) or produced (fivefold decrease in propionic acid). Some cheese techno-functional properties were slightly decreased by salt reduction, as extrusion (-17%) and oiling off (-4%) compared to regular cheeses. Overall, this study showed that a 30% salt reduction has little impact in the properties of Swiss-type cheeses, and that starters and ripening cultures strains could be chosen to compensate changes induced by salt modifications in Swiss-type and other hard cheeses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243640 | PMC |
http://dx.doi.org/10.3389/fnut.2022.888179 | DOI Listing |
Food Chem
January 2025
University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
The complexity of modern food supply chains limits the effectiveness of targeted approaches to address food traceability issues. Untargeted metabolomics provides a comprehensive profile of small molecules present within biological samples. In this study, the potential of ultra-high performance liquid chromatography-ion mobility-high resolution mass spectrometry (UHPLC-IMS-HRMS) to discriminate bovine milk samples collected at individual level was evaluated for traceability purposes.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Kahramanmaraş Sütçü İmam University, Technical Sciences Vocational School, Department of Food Processing, Kahramanmaraş, Türkiye. Electronic address:
Objective: This study aimed to investigate the presence of glycopeptide resistance and virulence genes in Enterococcus spp. isolated from cheese and the clonal relationship of E. faecium species with rectal surveillance isolates.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
Department of Food Science and Technology, Ayatollah Amoi Branch, Islamic Azad University, Amol, Iran.
The aim of the present research was to evaluate the effect of Urtica dioica L. (nettle) essential oil (in the forms of Pickering nanoemulsion (NEO) and free (EO)) on microbial, chemical and sensory changes of pizza cheese stored at 4 °C for 12 days. For this purpose, Escherichia coli and Listeria monocytogenes were inoculated into pizza cheese.
View Article and Find Full Text PDFNutrients
December 2024
Unitat de Suport a la Recerca Terres de l'Ebre, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain.
Background: Multidisciplinary lifestyle interventions are being researched to treat fibromyalgia. However, the impact of nutrition as a key treatment component is little studied. This study aimed to evaluate the effectiveness of the SYNCHRONIZE + lifestyle multidisciplinary intervention in improving adherence to the Mediterranean diet, nutrition quality and dietary intake pattern in persons with fibromyalgia and chronic fatigue syndrome.
View Article and Find Full Text PDFFoods
January 2025
Center of Excellence Polymer Processing, Faculty of Engineering, Dunarea de Jos University of Galați, Domnească Street, No. 111, 800201 Galați, Romania.
Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!