A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isorhamnetin: a flavonoid, attenuated doxorubicin-induced testicular injury via regulation of steroidogenic enzymes and apoptotic signaling gene expression in male rats. | LitMetric

Background: Male reproductive damage is one of the most adverse side effects of doxorubicin (DOX). Isorhamnetin is a natural flavonoid, which displays remarkable antioxidant potential.

Objective: The current research was designed to assess the protective effects of Isorhamnetin against DOX-instigated testicular damages.

Methods: Adult male Wistar rats (n=32) were divided into 4 groups: control, DOX (3 mg/kg i.p. 3 doses each after 1 week), DOX + Isorhamnetin (3 mg/kg 3 doses each after 1 week +10 mg/kg i.p. daily for 28 days, respectively), and Isorhamnetin (10 mg/kg i.p. per day). After 28 days of treatment, biochemical, spermatogenic, steroidogenic, hormonal, proapoptotic, antiapoptotic, and histopathological parameters were estimated.

Results: DOX exposure significantly decreased the activity of acid phosphatase, lactate dehydrogenase, and gamma-glutamyl transferase. Furthermore, DOX substantially decreased the activities of antioxidant enzymes, i.e. catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase along with protein content, whereas it increased the malondialdehyde level. It also reduced sperm progressive motility, viability, the number of hypoosmotic tail swelled spermatozoa, and epididymis sperm count and increased the sperm morphological anomalies (head, midpiece, and tail). Besides, it decreased the levels of follicle-stimulating hormone, luteinizing hormone, and plasma testosterone and lowered the expression of steroidogenic enzymes (3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase, and steroidogenic acute regulatory protein) and testicular antiapoptotic marker (B-cell lymphoma 2) but increased the expression of proapoptotic markers (BCL2-associated X protein and caspase-3) along with histopathological impairments. However, isorhamnetin prevented all the damages caused by DOX.

Conclusion: Conclusively, Isorhamnetin can be used as a powerful mitigating agent to avert DOX-induced testicular damages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244725PMC
http://dx.doi.org/10.1093/toxres/tfac024DOI Listing

Publication Analysis

Top Keywords

steroidogenic enzymes
8
dox isorhamnetin
8
mg/kg doses
8
doses week
8
isorhamnetin mg/kg
8
isorhamnetin
7
dox
5
isorhamnetin flavonoid
4
flavonoid attenuated
4
attenuated doxorubicin-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!