Matroid bases with cardinality constraints on the intersection.

Math Program

RWTH Aachen University, Chair of Management Science, Aachen, Germany.

Published: March 2021

Given two matroids and on a common ground set with base sets and , some integer , and two cost functions , we consider the optimization problem to find a basis and a basis minimizing the cost subject to either a lower bound constraint , an upper bound constraint , or an equality constraint on the size of the intersection of the two bases and . The problem with lower bound constraint turns out to be a generalization of the Recoverable Robust Matroid problem under interval uncertainty representation for which the question for a strongly polynomial-time algorithm was left as an open question in Hradovich et al. (J Comb Optim 34(2):554-573, 2017). We show that the two problems with lower and upper bound constraints on the size of the intersection can be reduced to weighted matroid intersection, and thus be solved with a strongly polynomial-time primal-dual algorithm. We also present a strongly polynomial, primal-dual algorithm that computes a minimum cost solution for every feasible size of the intersection in one run with asymptotic running time equal to one run of Frank's matroid intersection algorithm. Additionally, we discuss generalizations of the problems from matroids to polymatroids, and from two to three or more matroids. We obtain a strongly polynomial time algorithm for the recoverable robust polymatroid base problem with interval uncertainties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237001PMC
http://dx.doi.org/10.1007/s10107-021-01642-1DOI Listing

Publication Analysis

Top Keywords

bound constraint
12
size intersection
12
lower bound
8
upper bound
8
recoverable robust
8
problem interval
8
matroid intersection
8
primal-dual algorithm
8
intersection
6
algorithm
5

Similar Publications

This paper investigates the self-triggered control for stabilizing an n-dimensional linear time-invariant system under communication constraints, including finite bit rates and transmission delay. The concerned system is further perturbed by bounded process noise. To resolve these issues, a self-triggering strategy is proposed.

View Article and Find Full Text PDF

Search for light long-lived particles decaying to displaced jets in proton-proton collisions at √s = 13.6 TeV.

Rep Prog Phys

January 2025

European Organization for Nuclear Research, HCP, CH-1211 GENEVE 23, Geneva, 1211 Geneva 23, SWITZERLAND.

A search for light long-lived particles decaying to displaced jets is presented, using a data sample of proton-proton collisions at a center-of-mass energy of 13.6 TeV, corresponding to an integrated luminosity of 34.7 fb$^{-1}$, collected with the CMS detector at the CERN LHC in 2022.

View Article and Find Full Text PDF

Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode.

View Article and Find Full Text PDF

Unprecedented penetration of artificial intelligence (AI) algorithms has brought about rapid innovations in electronic hardware, including new memory devices. Nonvolatile memory (NVM) devices offer one such attractive alternative with ∼2× density and data retention after powering off. Compute-in-memory (CIM) architectures further improve energy efficiency by fusing the computation operations with AI model storage.

View Article and Find Full Text PDF

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!