Agave ( var. azul) is considered a crop with low genetic diversity because it has been propagated vegetatively for centuries for commercial purposes, and consequently, it could be equally susceptible to pests and diseases. However, the present study employs plant material derived from field-grown plants exhibiting phenotypic variability in susceptibility to agave wilt. The offshoots from rhizomes of these plants were reproduced and classified as potentially resistant or susceptible. Amplified fragment length polymorphism analysis confirmed wide genetic differences among individuals, but these differences were not correlated with the observed phenotypic variability in resistance. Propagated plantlets were inoculated with in two time-lapse confrontations for 72 h and 30 days. The early biochemical response showed statistically superior levels in the accumulation of shikimic acid, phenolic compounds, and chitinase activity in potentially resistant plantlets. There was an inverse correlation of these early biochemical responses and salicylic acid and the incidence of diseased root cells in isogenic plantlets in the 30-day confrontation with , suggesting that these activities and accumulation of molecules were primordial in the defence against this pathogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246091 | PMC |
http://dx.doi.org/10.1093/aobpla/plac027 | DOI Listing |
Materials (Basel)
October 2024
Department of Chemical Engineering, Universidad de Guadalajara, 1421 Blvd. Marcelino García Barragán, Guadalajara C.P. 44430, Jal., Mexico.
Int J Mol Sci
July 2024
Postgraduate Studies and Research Division, Tecnológico Nacional de México/Instituto Tecnológico de Tlajomulco, Circuito Vicente Fernández-Gómez km 10, Tlajomulco de Zúñiga CP 45640, Jalisco, Mexico.
stems store fructan polymers, the main carbon source for tequila production. This crop takes six or more years for industrial maturity. In conducive conditions, agave wilt disease increases the incidence of dead plants after the fourth year.
View Article and Find Full Text PDFWaste Manag
March 2024
Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico. Electronic address:
Agave bagasse, a lignocellulosic waste that results from the milling and juice extraction of Agave tequilana var azul pineapples, is a suitable substrate for the production of methane through anaerobic digestion. However, it is necessary to apply a pretreatment to convert the bagasse into energy. In this context, this paper proposes using ruminal microorganisms to hydrolyze agave bagasse.
View Article and Find Full Text PDFPolymers (Basel)
September 2023
Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico.
In this work, cellulose nanocrystals (CNCs), bleached cellulose nanofibers (bCNFs), and unbleached cellulose nanofibers (ubCNFs) isolated by acid hydrolysis from Weber var. Azul bagasse, an agro-waste from the tequila industry, were used as reinforcements in a thermoplastic starch matrix to obtain environmentally friendly materials that can substitute contaminant polymers. A robust characterization of starting materials and biocomposites was carried out.
View Article and Find Full Text PDFPeerJ
January 2023
Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Background: Genetic diversity is fundamental for the survival of species. In particular, in a climate change scenario, it is crucial that populations maintain genetic diversity so they can adapt to novel environmental conditions. Genetic diversity in wild agaves is usually high, with low genetic differentiation among populations, in part maintained by the agave pollinators such as the nectarivorous bats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!