Isoflavaspidic acid PB (PB), a phloroglucinol derivative extracted from aerial parts of (L.) Schott, had antifungal activity against several dermatophytes. This study was aimed at exploring the antifungal mechanism of PB against (). The effectiveness of PB in inhibiting growth was detected by time-kill kinetics study and fungal biomass determination. Studies on the mechanism of action were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), sorbitol and ergosterol assay, nucleotide leakage measurement, and UPLC-based test and enzyme-linked immunosorbent assay. Fungicidal activity of PB was concentration- and time-dependent at 2 × MIC (MIC: 20 g/mL) after 36 h. The total biomass of was reduced by 64.17%, 77.65%, and 84.71% in the presence of PB at 0.5 × MIC, 1 × MIC, and 2 × MIC, respectively. SEM analysis showed that PB changed mycelial morphology, such as shrinking, twisting, collapsing, and even flattening. TEM images of treated cells exhibited abnormal distributions of polysaccharide particles, plasmolysis, and cytoplasmic content degradation accompanied by plasmalemma disruption. There were no changes in the MIC of PB in the presence of sorbitol. However, the MIC values of PB were increased by 4-fold with exogenous ergosterol. At 4 h and 8 h, PB increased nucleotide leakage. Besides, ergosterol content in membrane treated with PB at 0.5 × MIC, 1 × MIC, and 2 × MIC was decreased by 9.58%, 15.31%, and 76.24%, respectively. There was a dose-dependent decrease in the squalene epoxidase (SE) activity. And the reduction in the sterol 14-demethylase P450 (CYP51) activity was achieved after PB treatments at 1 × MIC and 2 × MIC. These results suggest that PB displays nonspecific action on the cell wall. The membrane damaging effects of PB were attributed to binding with ergosterol to increase membrane permeability and interfering ergosterol biosynthesis involved with the reduction of SE and CYP51 activities. Further study is needed to develop PB as a natural antifungal candidate for clinical use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249503 | PMC |
http://dx.doi.org/10.1155/2022/6230193 | DOI Listing |
J Med Microbiol
January 2025
Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maring, Colombo Avenue, 5790, Maring, PR, Brazil.
Fungal infections caused by yeast have increased in recent decades, becoming a major threat to public health. Antifungal therapy represents a challenging problem because, in addition to presenting many side effects, fungal resistance has been increasing in recent years. As a result, the search for new therapeutic agents has advanced with the use of new technologies such as nanoparticles (NPs).
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
Infectious diseases, including bacterial, fungal, and viral, have once again gained urgency in the drug development pipeline after the recent COVID-19 pandemic. Tuberculosis (TB) is an old infectious disease for which eradication has not yet been successful. Novel agents are required to have potential activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of TB.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Mkelly Biotech Pvt Ltd., Mohali, Punjab, India.
Background: The rise of antibiotic-resistant pathogens has intensified the search for novel antimicrobial agents. This study aimed to isolate from local soil samples and evaluate its antimicrobial properties, along with optimizing the production of bioactive compounds.
Methods: Soil samples were collected from local regions, processed, and analysed for Streptomyces strains isolation using morphological characteristics and molecular identification through 16S rRNA gene PCR assay.
RSC Adv
January 2025
Department of Physics and Chemistry, Faculty of Education, Alexandria University Egypt.
A novel series of azo dyes was successfully synthesized by combining amino benzoic acid and amino phenol on the same molecular framework azo linkage. The structural elucidation of these dyes was carried out using various spectroscopic techniques, including UV-vis, FT-IR, NMR spectroscopy, and HRMS. Surprisingly, the aromatic proton in some dyes exhibited exchangeability in DO, prompting a 2D NMR analysis to confirm this phenomenon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!