A novel cyanine 3 (Cy3)-based bio-conjugated sensor has been developed to detect target DNA or extracted RNA from COVID -19 samples using the fluorescence resonance energy transfer (FRET) experiment. A special sequence of the COVID -19 genome was selected as a complementary DNA (target DNA) part. The opposite chain of this target sequence was designed in 2 parts; one part was attached to the Cy3 organic dye (capture DNA or Cy3- DNA), and the other part was attached to the BHQ molecule (quencher DNA or BHQ- DNA). The Cy3 molecule acts as a donor pair, and BHQ acts as an acceptor pair in the FRET experiment. The capture DNA and quencher DNA can form a sandwiched complex in the presence of target DNA. The formation of the entitled sandwiched hybrid causes the decrement of emission intensity of the Cy3 donor in bio-conjugated Cy3-DNA via energy transfer from Cy3 (as a donor) to BHQ (as an acceptor). Indeed, in the presence of non-complementary DNA, the pairing of DNA strands does not occur, the FRET phenomenon does not exist, and therefore fluorescence intensity of Cy3 does not decrease. Moreover, this biosensor was successfully applied to analyze real samples containing extracted RNA of COVID -19 prepared for the reverse transcriptase-polymerase chain reaction (RT-PCR) test, and the results were promising.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-022-02992-5DOI Listing

Publication Analysis

Top Keywords

target dna
16
dna
13
covid -19
12
extracted rna
8
rna covid
8
energy transfer
8
fret experiment
8
capture dna
8
quencher dna
8
intensity cy3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!