Aim: The aim of this study was to compare the validity of different machine learning algorithms to develop and validate predictive models for periodontitis.
Materials And Methods: Using national survey data from Taiwan (n = 3453) and the United States (n = 3685), predictors of periodontitis were extracted from the datasets and pre-processed, and then 10 machine learning algorithms were trained to develop predictive models. The models were validated both internally (bootstrap sampling) and externally (alternative country's dataset). The algorithms were compared across six performance metrics ([i] area under the curve for the receiver operating characteristic [AUC], [ii] accuracy, [iii] sensitivity, [iv] specificity, [v] positive predictive value, and [vi] negative predictive value) and two methods of data pre-processing ([i] machine-learning-based feature selection and [ii] dimensionality reduction into principal components).
Results: Many algorithms showed extremely strong performance during internal validation (AUC > 0.95, accuracy > 95%). However, this was not replicated in external validation, where predictive performance of all algorithms dropped off drastically. Furthermore, predictive performance differed according to data pre-processing methodology and the cohort on which they were trained.
Conclusions: Larger sample sizes and more complex predictors of periodontitis are required before machine learning can be leveraged to its full potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796669 | PMC |
http://dx.doi.org/10.1111/jcpe.13692 | DOI Listing |
Curr Eye Res
January 2025
Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.
Purpose: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.
Methods: The retinal layer thickness data obtained from C57BL/6 and DBA/2J mice were processed for machine learning after segmenting mouse retinal SD-OCT scans. Twenty-two models were trained to predict the mouse groups.
AAPS J
January 2025
Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA.
Protein-based therapeutics may elicit undesired immune responses in a subset of patients, leading to the production of anti-drug antibodies (ADA). In some cases, ADAs have been reported to affect the pharmacokinetics, efficacy and/or safety of the drug. Accurate prediction of the ADA response can help drug developers identify the immunogenicity risk of the drug candidates, thereby allowing them to make the necessary modifications to mitigate the immunogenicity.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, NY, USA.
Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Erzincan University, 24002, Erzincan, Turkey.
The aesthetic understanding has found its place in dental clinics and prosthetic dental treatment. Determining the appropriate prosthetic tooth color between the clinician, patient and technician is a difficult process due to metamerism. Metamerism, known as the different perception of the color of an object under different light sources, is caused by the lighting differences between the laboratory and the dental clinic.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden.
Background: Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!