A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bandgap-engineered ferroelectric single-crystalline NBT-BT based nanocomposites with excellent visible light-ultrasound catalytic performance. | LitMetric

Bandgap engineered ferroelectrics exhibit encouraging multi-energy catalytic performance by coupling the piezoelectricity and photoexcitation, which shows immense potential for environmental remediation and fuel production. However, it is challenging to prepare nano single-crystalline ferroelectric piezo-photoelectric with strong visible light absorption ability. Here, Ni mediated NBT-BT(NBT-BNT) single-crystalline nanocubes around 100 nm with considerable visible light absorption were synthesized by a high-temperature hydrothermal method. The mechanism of Ni2+ on the formation of NBT-BT nanocubes was proposed. The catalytic efficiency of NBT-BNT nanocubes is enhanced by decorating carbon quantum dots (CQDs). The RhB can be degraded within 8 min and the hydrogen production rate reaches up to ∼350 μmol g-1h-1 under visible light-ultrasonic condition. Moreover, under the simulated sunlight-ultrasound condition, RhB can be degraded within merely 3 min and a high H2 production rate of ∼747 μmol g-1h-1 is achieved. This work presents a paradigm for preparing ferroelectric single-crystalline nanocatalysts for multi-energy catalytic application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135543DOI Listing

Publication Analysis

Top Keywords

ferroelectric single-crystalline
8
catalytic performance
8
multi-energy catalytic
8
visible light
8
light absorption
8
rhb degraded
8
production rate
8
bandgap-engineered ferroelectric
4
single-crystalline
4
single-crystalline nbt-bt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!