Recovering harmful elements (As, Pb) and metals (Cu, Bi, Zn) from copper smelting flue dust (CSFD) is a critical subject and task for arsenic contamination control and resource sustainability. In this work, a two-step pyrometallurgical process was developed to preferentially separate arsenic and recover metals from CSFD. During the low-temperature roasting, arsenic-bearing waste acid (AWA) from copper industry was used as an additive and effective removal of arsenic (97.8 %) was obtained at 350 °C, which follows the idea of "treating waste with waste". Subsequently, the recovery and separation of metals were well-achieved based on the affinity between metals and sulfur in the second stage of roasting, by which 91.28 % of Pb and 95.65 % of Bi were recovered as an alloy (Pb 86.48 %, Bi 13.21 %), while 82.62 % of Cu was enriched in the matte. The migration rules of metal elements and phase transformation in the whole process were studied in-depth from theory and experiments. This process can realize the efficient removal of arsenic as well as effective recovery of metals via cooperative disposal of CSFD and AWA, and minimize the environmental impacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157063 | DOI Listing |
Sci Total Environ
January 2025
Tyndall Centre for Climate Change Research, School of Engineering, 5th Floor, Engineering A, University of Manchester, Manchester M13 9PL, UK. Electronic address:
In Santiago, Chile, 315,000 liquid crystal display (LCD) monitors are discarded annually. Of this amount, the formal sector of refurbishment and recycling manages only 5 %, creating the conditions for the emergence of informal management systems. This study provides the first comprehensive environmental and circularity assessment of monitor treatment across multiple impact categories, identifying trade-offs associated with formal and informal operations.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies.
View Article and Find Full Text PDFSci Total Environ
January 2025
Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.
Extracellular polymeric substances (EPS) significantly influence the properties and performance of waste activated sludge. Various pretreatment protocols with different extraction efficiency and characteristics of EPS have been reported, which markedly impact subsequent treatment and disposal of sewage sludge. This study systematically assesses the EPS properties from twelve extraction pretreatment methods.
View Article and Find Full Text PDFSci Total Environ
January 2025
UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia.
Anaerobic co-digestion is emerging as an option for wastewater biosolids management. Variations in treatment parameters can impact odour emissions and, in turn, odour nuisance reduces community acceptance and alternatives for beneficial reuse of biosolids via land application. This study assessed odour emissions from digested sludge and biosolids resulting from the anaerobic co-digestion of wastewater sludge with beverage rejects (beer and cola) and food wastes.
View Article and Find Full Text PDFWaste Manag
December 2024
Cooperative Program for Resources Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
The proliferation of space debris poses a significant challenge in modern space exploration, with potential repercussions for the future space environment and activities. Various research and technological developments have addressed these concerns, including estimating the number of space debris orbiting the Earth and its efficient removal. This paper proposes a novel resource-oriented perspective on space debris and focuses on the composition and resource potential of space debris.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!