Inhibition of Radix Scutellariae flavones on carboxylesterase mediated activations of prodrugs.

Life Sci

School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region. Electronic address:

Published: September 2022

Aims: Carboxylesterase (CES) plays an essential role in the hydrolysis of ester prodrugs. Our study explored the inhibitions of Radix Scutellariae flavones, including baicalein (B), baicalin (BG), wogonin (W), wogonoside (WG), oroxylin A (OXA) and oroxylin A-7-O-glucuronide (OAG), on CES-mediated hydrolysis of seven prodrugs (capecitabine, clopidogrel, mycophenolate mofetil, dabigatran etexilate, acetylsalicylic acid, prasugrel and irinotecan).

Main Methods: In vitro screenings were developed by incubating the flavones with prodrugs in rat plasma, intestine S9 and liver S9. Docking simulations were conducted using AMDock v1.5.2. In vivo evaluations were performed in rats co-administered with the selected flavone and prodrug via oral gavage/intravenous administration for five consecutive days.

Key Findings: The in vitro investigation showed that B and OXA demonstrated strongest inhibitions on the hydrolysis of irinotecan followed by dabigatran in rat plasma, intestine S9 and liver S9. Consistent results showed in the molecular docking analyses. Additionally, in rats receiving irinotecan, B/OXA intravenous and oral pre-treatments both led to reduction trends on the active metabolite SN-38 formation in plasma. Besides, significant decreases of SN-38/irinotecan plasma concentration ratios were found in the B/OXA oral pre-treatment group with quicker and stronger inhibition potential in OXA pre-treatment than that from B pre-treatment. OXA oral pre-treatment was also found to be able to significantly inhibit intestinal CES2 activities at 0.5 h and 5 h after irinotecan administration.

Significance: Our current findings for the first time alert on potential CES-mediated HDIs between RS flavones and prodrugs, which provide a constructive information referring to rational drug combinations in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2022.120743DOI Listing

Publication Analysis

Top Keywords

radix scutellariae
8
scutellariae flavones
8
flavones prodrugs
8
rat plasma
8
plasma intestine
8
intestine liver
8
oral pre-treatment
8
prodrugs
5
inhibition radix
4
flavones
4

Similar Publications

[Comparative study on metabolites in rat liver microsomes, urine, feces and bile between Shuganning Injection and Scutellariae Radix extract].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Pharmaceutical Sciences, Guizhou Medical University Guiyang 550004, China Engineering Research Center for Development and Application of Ethnic Medicine and Traditional Chinese Medicine, Guizhou Medical University Guiyang 550004, China.

This study aims to compare the metabolic differences of baicalin and its analogues between Shuganning Injection and Scutellariae Radix extract. Twelve SD rats were randomly divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. Their liver microsomes were incubated with the drugs, and then the samples were collected.

View Article and Find Full Text PDF

This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1-3 times to roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1-choline chloride/xylose (1:2) + 30% water, 2-choline chloride/glucose (1:2) + 30% water, 3-choline chloride/ethylene glycol (1:2), and 4-tap water (EC = 0.

View Article and Find Full Text PDF

An accurate and robust multicomponent quantitative analysis method: Molar mass coefficient method.

J Chromatogr A

December 2024

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. Electronic address:

Multicomponent quantitative analysis (MCQA) is necessary for comprehensively characterizing the quality of complex samples, including medicines, foods. However, the limited supply of reference substances and the high costs associated with testing hinder the application of the MCQA using the external standard (ES) method. Here we propose a Molar Mass Coefficient (MMC) method for the quantification of multiple compounds with identical chromophore utilizing a single reference compound (SRC) by a UV detector.

View Article and Find Full Text PDF

Changes in Growth and Metabolic Profile of Georgi in Response to Sodium Chloride.

Biology (Basel)

December 2024

Department of Pharmaceutical Biology and Biotechnology, Division Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.

Georgi is a valuable medicinal plant of the family. Its roots have been used in Traditional Chinese Medicine (under the name Huang-qin) since antiquity and are nowadays included in Chinese and European Pharmacopoeias. It is abundant in bioactive compounds which constitute up to 20% of dried root mass.

View Article and Find Full Text PDF
Article Synopsis
  • Kampo medicine can lead to severe liver injury, as shown in a case where a 29-year-old woman experienced this after taking Saibokuto, requiring steroid treatment for recovery.
  • A systematic review identified 37 cases of drug-induced liver injury linked to Kampo medicines, with 65.9% specifically associated with the ingredient Scutellariae radix.
  • The findings suggest important liver function monitoring within the first two months of taking Kampo medicines with Scutellariae radix due to the potential for liver damage.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!