Non-invasive methods of detecting cancer by circulating exosomes are challenged by inefficient purification and identification. This study hereby proposed an automated centrifugal microfluidic disc system combined with functionalized membranes (Exo-CMDS) to isolate and enrich exosomes, which will then be processed by a novel aptamer fluorescence system (Exo-AFS) in order to detect the exosome surface proteins in an effective manner. Exo-CMDS features in highly qualified yields with optimal exosomal concentration of 5.1 × 10 particles/mL from trace amount of blood samples (<300 μL) in only 8 min, which truly accomplishes the exosome isolation and purification in one-step methods. Meanwhile, the limit of detection (LOD) of PD-L1 in Exo-AFS reaches as low as 1.58 × 10 particles/mL. In the trial of clinical samples, the diagnostic accuracy of lung cancer achieves 91% (95% CI: 79%-96%) in contrast to the exosome ELISA (area under the curve: 0.9378 versus 0.8733; 30 patients). Exo-CMDS and Exo-AFS display the precedence in the aspects of inexpensiveness, celerity, purity, sensitivity and specificity when compared with the traditional techniques. Such assays potentially grant a practicable way of detecting inchoate cancers and guiding immunotherapy in clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114487 | DOI Listing |
AAPS PharmSciTech
November 2024
Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq.
Breast cancer, a leading cause of mortality among women, has been recognized as requiring improved diagnostic methods. Exosome proteins, found in small extracellular vesicles, have emerged as a promising solution, reflecting the state of their cell of origin and playing key roles in cancer progression. This review examines their potential in breast cancer diagnosis, discussing advanced isolation and characterization techniques such as ultracentrifugation and microfluidic-based approaches.
View Article and Find Full Text PDFTalanta
January 2025
The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China. Electronic address:
The analysis of microRNAs (miRNAs) in exosomes is of great importance for noninvasive early disease diagnosis. However, current techniques to detect exosomal miRNAs is hampered either by laborious exosome isolation or low abundance of miRNAs in exosomes. Here, we developed a microfluidic chemiluminescence (CL) analysis method for the multiplexed detection of exosomal miR-21 and miR-155.
View Article and Find Full Text PDFLab Chip
September 2024
Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
The gut communicates with the brain in a variety of ways known as the gut-brain axis (GBA), which is known to affect neurophysiological functions as well as neuronal disorders. Exosomes capable of passing through the blood-brain-barrier (BBB) have received attention as a mediator of gut-brain signaling and drug delivery vehicles. In conventional well plate-based experiments, it is difficult to observe the exosome movement in real time.
View Article and Find Full Text PDFWith the development of in vitro diagnostics, extracting submicron scale particles from mixed body fluids samples is crucial. In recent years, microfluidic separation has attracted much attention due to its high efficiency, label-free, and inexpensive nature. Among the microfluidic-based separation, the separation based on ultrasonic standing waves has gradually become a powerful tool.
View Article and Find Full Text PDFSensors (Basel)
November 2023
Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
The early-stage diagnosis of cancer is a crucial clinical need. The inadequacies of surgery tissue biopsy have prompted a transition to a less invasive profiling of molecular biomarkers from biofluids, known as liquid biopsy. Exosomes are phospholipid bilayer vesicles present in many biofluids with a biologically active cargo, being responsible for cell-to-cell communication in biological systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!