Antidiabetic sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted attention for their cardiorenal-protective properties beyond their glucose-lowering effect. However, their benefits in ischemic stroke remain controversial. Here we show the effects of luseogliflozin, a selective SGLT2 inhibitor, in acute ischemic stroke, using a permanent middle cerebral artery occlusion (pMCAO) model in non-diabetic mice. Pretreatment with low-dose luseogliflozin, which does not affect blood glucose levels, significantly attenuated infarct volume, blood-brain barrier disruption, and motor dysfunction after pMCAO. SGLT2 was expressed predominantly in brain pericytes and was upregulated in peri- and intra-infarct areas. Notably, luseogliflozin pretreatment reduced pericyte loss in ischemic areas. In cultured pericytes, luseogliflozin activated AMP-activated protein kinase α and increased mitochondrial transcription factor A expression and number of mitochondria, conferring resistance to oxygen-glucose deprivation. Collectively, pre-stroke inhibition of SGLT2 induces ischemic tolerance in brain pericytes independent of the glucose-lowering effect, contributing to the attenuation of ischemic brain injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250510PMC
http://dx.doi.org/10.1038/s42003-022-03605-4DOI Listing

Publication Analysis

Top Keywords

sodium-glucose cotransporter
8
ischemic brain
8
brain injury
8
ischemic stroke
8
brain pericytes
8
ischemic
6
low-dose sodium-glucose
4
cotransporter inhibitor
4
inhibitor ameliorates
4
ameliorates ischemic
4

Similar Publications

Background: Transthyretin amyloid cardiomyopathy (ATTR-CM) commonly leads to heart failure but has traditionally been an exclusion criterion in randomized clinical trials (RCTs) of sodium-glucose cotransporter 2 inhibitors (SGLT2i); therefore, the effects of these drugs in this population remain undocumented. In light of recent studies, this meta-analysis aimed to investigate the effect of SGLT2i on the prognosis of patients with ATTR-CM.

Methods: A comprehensive search of Medline, Scopus, and the Cochrane Library was conducted up to November 17, 2024.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown benefits in improving cardiovascular (CV) outcomes in patients with heart failure (HF) and may mitigate symptom progression in myocardial infarction (MI). However, their effectiveness in patients with type 2 diabetes and MI undergoing percutaneous coronary intervention (PCI) is unclear.

Methods: To identify eligible studies, a comprehensive search of electronic databases, PubMed, Cochrane Library, Scopus and Embase, was conducted from inception until May 2024.

View Article and Find Full Text PDF

Sodium-dependent glucose transporter 2 inhibitors improve heart function in patients with type 2 diabetes and heart failure.

World J Cardiol

January 2025

Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China.

This article discusses the study by Grubić Rotkvić on the mechanisms of action of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM) and heart failure (HF). T2DM and HF are highly comorbid, with a significantly increased prevalence of HF in patients with T2DM. SGLT2i exhibit potential in reducing hospitalization rates for HF and cardiovascular mortality through multiple mechanisms, including improving blood glucose control, promoting urinary sodium excretion, reducing sympathetic nervous system activity, lowering both preload and afterload on the heart, alleviating inflammation and oxidative stress, enhancing endothelial function, improving myocardial energy metabolism, and stabilizing cardiac ion homeostasis.

View Article and Find Full Text PDF

Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling.

View Article and Find Full Text PDF

Introduction: Effects of Dapagliflozin (Dapa) and Dapagliflozin-Saxagliptin combination (Combo) was examined on peripheral blood derived CD34 + Hematopoetic Stem Cells (HSCs) as a cellular CVD biomarker. Both Dapa (a sodium-glucose co-transporter 2 or SGLT2, receptor inhibitor) and Saxagliptin (a Di-peptydl-peptidase-4 or DPP4 enzyme inhibitor) are commonly used type 2 diabetes mellitus or T2DM medications, however the benefit of using the combination has not been evaluated for cardio-renal risk assessment, in a real-life practice setting, compared to a placebo.

Hypothesis: We hypothesized that Dapa will improve the outcomes when compared to placebo and the Combo maybe even more beneficial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!