Metabolic reprogramming of the tumor microenvironment (TME) and poor immunogenicity are two of the challenges that cancer immunotherapies have to overcome for improved clinical benefits. Among various immunosuppressive metabolites that keep anti-tumor immunity in check, the tryptophan catabolite kynurenine (Kyn) is an attractive target for blockade given its role in mediating immunosuppression through multiple pathways. Here, we present a local chemo-immunometabolic therapy through injection of a supramolecular hydrogel concurrently releasing doxorubicin that induces immunogenic tumor cell death and kynureninase that disrupts Kyn-mediated immunosuppressive pathways in TME. The combination synergically enhances tumor immunogenicity and unleashes anti-tumor immunity. In mouse models of triple negative breast cancer and melanoma, a single low dose peritumoral injection of the therapeutic hydrogel promotes TME transformation toward more immunostimulatory, which leads to enhanced tumor suppression and extended mouse survival. In addition, the systemic anti-tumor surveillance induced by the local treatment exhibits an abscopal effect and prevents tumor relapse post-resection. This versatile approach for local chemo-immunometabolic therapy may serve as a general strategy for enhancing anti-tumor immunity and boosting the efficacy of cancer immunotherapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250515 | PMC |
http://dx.doi.org/10.1038/s41467-022-31579-8 | DOI Listing |
Allergol Immunopathol (Madr)
January 2025
Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
Rheumatoid arthritis (RA) is a chronic autoimmune joint disease. Its main pathological manifestations are joint cartilage, bone tissue injury, synovial hyperplasia, and chronic inflammation. At present, the pathogenesis of the disease has not been fully defined, and delaying the disease to improve joint function is the existing treatment.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Medical Laboratory Technology Department, Beirut Arab University, Beirut, Lebanon.
Cancer stem cells (CSCs) are the key drivers of tumorigenesis and relapse. A growing body of evidence reveals the tremendous power of CSCs to directly resist innate and adaptive anti-tumor immune responses. The immunomodulatory property gives CSCs the ability to control the tumor immune microenvironment (TIME).
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Urology, Beijing TianTan Hospital, Capital Medical University, No. 119 South 4 Ring West Road, Fengtai District, 100070, Beijing, China.
Background: Although pentatricopeptide repeat domain 1 (PTCD1) has been found to modulate mitochondrial metabolic and oxidative phosphorylation, its contribution in the growth of clear cell renal cell carcinoma (ccRCC) remains unknown.
Methods: The Cancer Genome Atlas (TCGA) dataset was utilized to examine the transcriptional alterations, patient characteristics, clinical outcomes, as well as pathway activation of PTCD1. The Weighted Gene Co-expression Network Analysis (WGCNA) was performed to investigate potential genes that associated with PTCD1.
J Control Release
January 2025
College of Pharmaceutical Sciences, College of Chemistry, Chemical Engineering and Materials Science,, Soochow University, Suzhou 215123, People's Republic of China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China. Electronic address:
Vaccination may cure cancer patients by inducing tumor-specific immune responses. Radiotherapy is an appealing strategy to generate cancer vaccines in situ; thus far, however, only modest and short-lived immune responses are achieved. We here show that radiation combined with co-activating STING-TLR9 can generate powerful in situ cancer vaccines.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China. Electronic address:
Incomplete radiofrequency ablation (iRFA) not only leaves residual tumor, but also render the residual tumor highly self-adaptable and immunosuppressive, consequently expediting residual tumor progression including relapse. To address it, radiofrequency dynamic therapy (RFDT) with identical trigger (namely radiofrequency) has been established and enabled by polyethylene glycol (PEG)-modified Fe-based single atom nanozyme (P@Fe SAZ). P@Fe SAZ can respond to radiofrequency field to produce reactive oxygen species (ROS), attaining the nanomedicine-unlocked low-temperature RFDT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!