Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow.

Diagn Interv Imaging

Department of Radiology, CHU de Besancon, Besançon 25030, France; Nanomedicine Laboratory EA4662, Université de Franche-Comté, Besançon 25030, France. Electronic address:

Published: December 2022

Purpose: The main objective of this study was to compare radiologists' performance without and with artificial intelligence (AI) assistance for the detection of bone fractures from trauma emergencies.

Materials And Methods: Five hundred consecutive patients (232 women, 268 men) with a mean age of 37 ± 28 (SD) years (age range: 0.25-99 years) were retrospectively included. Three radiologists independently interpreted radiographs without then with AI assistance after a 1-month minimum washout period. The ground truth was determined by consensus reading between musculoskeletal radiologists and AI results. Patient-wise sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for fracture detection and reading time were compared between unassisted and AI-assisted readings of radiologists. Their performances were also assessed by receiver operating characteristic (ROC) curves.

Results: AI improved the patient-wise sensitivity of radiologists for fracture detection by 20% (95% confidence interval [CI]: 14-26), P< 0.001) and their specificity by 0.6% (95% CI: -0.9-1.5; P = 0.47). It increased the PPV by 2.9% (95% CI: 0.4-5.4; P = 0.08) and the NPV by 10% (95% CI: 6.8-13.3; P < 0.001). Thanks to AI, the area under the ROC curve for fracture detection of readers increased respectively by 10.6%, 10.2% and 9.9%. Their mean reading time per patient decreased by respectively 10, 16 and 12 s (P < 0.001).

Conclusions: AI-assisted radiologists work better and faster compared to unassisted radiologists. AI is of great aid to radiologists in daily trauma emergencies, and could reduce the cost of missed fractures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diii.2022.06.004DOI Listing

Publication Analysis

Top Keywords

fracture detection
16
artificial intelligence
8
daily trauma
8
trauma emergencies
8
patient-wise sensitivity
8
reading time
8
compared unassisted
8
radiologists
7
detection
5
intelligence solution
4

Similar Publications

The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the role of ferroptosis in the occurrence of postoperative cognitive dysfunction (POCD) using a mouse model and to elucidate whether electroacupuncture (EA) can improve POCD by suppressing ferroptosis via the transferrin receptor 1 (TFR1)-divalent metal transporter 1 (DMT1)-ferroportin (FPN) pathway.

Methods: The experiment involved three groups: the control group, the POCD group and the POCD + EA group. The POCD animal model was established using sevoflurane anesthesia and tibial fracture.

View Article and Find Full Text PDF

Novel transfer learning based bone fracture detection using radiographic images.

BMC Med Imaging

January 2025

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients.

View Article and Find Full Text PDF

Multiphoton and Harmonic Imaging of Microarchitected Materials.

ACS Appl Mater Interfaces

January 2025

Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

Article Synopsis
  • Microadditive manufacturing enables the creation of intricate nano- and microscale components, leading to advancements in various industries.
  • This research explores two-photon and three-photon fluorescence imaging, along with third-harmonic generation microscopy, to analyze complex lattice structures produced by multiphoton lithography.
  • The study reveals that multiphoton fluorescence imaging provides better depth penetration and nondestructive identification of internal modifications and defects, improving quality control in microadditively manufactured products.
View Article and Find Full Text PDF

Introduction: Perilunate dislocations (PLD) and perilunate fracture-dislocations (PLFD) are high-energy wrist injuries often linked to significant post-traumatic osteoarthritis. This study aims to determine whether PLD and PLFD yield different radiological outcomes following surgical treatment while identifying prognostic factors for worse outcomes.

Materials And Methods: We retrospectively analyzed 51 patients treated for perilunate injuries between 2000 and 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!