Contribution of sediment contamination to multi-stress in lowland waters.

Sci Total Environ

Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.

Published: October 2022

Water bodies in densely populated lowland areas are often impacted by multiple stressors. At these multi-stressed sites, it remains challenging to quantify the contribution of contaminated sediments. This study, therefore, aimed to elucidate the contribution of sediment contamination in 16 multi-stressed drainage ditches throughout the Netherlands. To this end an adjusted TRIAD framework was applied, where 1) contaminants and other variables in the sediment and the overlying water were measured, 2) whole-sediment laboratory bioassays were performed using larvae of the non-biting midge Chironomus riparius, and 3) the in situ benthic macroinvertebrate community composition was determined. It was hypothesized that the benthic macroinvertebrate community composition would respond to all jointly present stressors in both water and sediment, whereas the whole-sediment bioassays would only respond to the stressors present in the sediment. The benthic macroinvertebrate community composition was indeed related to multiple stressors in both water and sediment. Taxa richness was positively correlated with the presence of PO-P in the water, macrophyte cover and some pesticides. Evenness, the number of Trichoptera families and the SPEAR were positively correlated to the C:P ratios in the sediment, whilst negative correlations were observed with various contaminants in both the water and sediment. The whole-sediment bioassays with C. riparius positively related to the nutrient content of the sediment, whereas no negative relations to the sediment-associated contaminants were observed, even though the lowered SPEAR index indicated contaminant effects in the field. Therefore, it was concluded that sediment contamination was identified as one of the various stressors that potentially drove the benthic macroinvertebrate community composition in the multi-stressed drainage ditches, but that nutrients may have masked the adverse effects caused by low and diverse sediment contaminants on C. riparius in the bioassays.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157045DOI Listing

Publication Analysis

Top Keywords

benthic macroinvertebrate
16
macroinvertebrate community
16
community composition
16
sediment contamination
12
water sediment
12
sediment
10
contribution sediment
8
multiple stressors
8
multi-stressed drainage
8
drainage ditches
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!