Comparison of disinfection-residual-bacteria (DRB) after seven different kinds of disinfection: Biofilm formation, membrane fouling and mechanisms.

Sci Total Environ

Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China.

Published: October 2022

AI Article Synopsis

  • Membrane fouling is a major issue for reverse osmosis (RO) water systems, influenced by disinfection methods, which can leave behind bacteria that cause biofouling.
  • The study compared five traditional disinfection methods (like UV and NaClO) and two novel ones (KFeO and FES) to see their effects on RO membrane fouling; results showed UV-DRB caused more fouling compared to the others.
  • ATP levels were found to be a good indicator of biofouling potential, with thicker and denser biofilms linked to higher fouling, particularly from bacteria like Pseudomonas and Sphingomonas that produce more extracellular polymeric substances (EPS).

Article Abstract

Membrane fouling is the Achilles' heel of the reverse osmosis (RO) system for high-quality reclaimed water production. Previous studies have found that after the significant selection effect of traditional disinfection, the remaining disinfection-residual bacteria (DRB) may possess more severe biofouling potentials. To provide more constructive advice for the prevention of biofouling, we compared the RO membrane fouling characteristics of DRB after using five commonly used disinfection methods (NaClO, NHCl, ClO, UV, and O) and two novel disinfection methods (KFeO and the flow-through electrode system (FES)). Compared with the control group (undisinfected, 21.1 % flux drop), the UV-DRB biofilm aggravated biofouling of the RO membrane (23.4 % flux drop), while the FES, KFeO, and NHCl treatments showed less severe biofouling, with final flux drops of 6.9 %, 8.1 %, and 8.1 %, respectively. Adenosine triphosphate (ATP) was found to be a capable indicator for predicting the biofouling potential of DRB. Systematic analysis showed that the thickness and density of the DRB biofilms were most closely related to the different fouling degree of RO membranes. Moreover, the relative abundance of bacteria with higher extracellular polymeric substance (EPS) secretion levels, such as Pseudomonas and Sphingomonas, was found closely related with the biofouling degree of RO membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157079DOI Listing

Publication Analysis

Top Keywords

membrane fouling
12
severe biofouling
8
disinfection methods
8
flux drop
8
degree membranes
8
biofouling
6
drb
5
comparison disinfection-residual-bacteria
4
disinfection-residual-bacteria drb
4
drb kinds
4

Similar Publications

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

The effects of termination functional groups of the TiCT MXene membrane on the structural and dynamics properties of nearby water molecules and foulants are investigated through molecular dynamics simulations. The simulation results show that a much denser water layer can be formed at the vicinity of hydroxyl (OH) termination than that near fluorine (F) or oxygen (O) termination. Particular focus is given to the molecular binding properties of β-d-mannuronic acid (M) and α-l-guluronic acid (G) alginate monomers on the MXene membrane surface with different termination groups.

View Article and Find Full Text PDF

Investigation of Filtration Performances in Eggshell Ultrafiltration Membranes with Surface Functionalized Using Graphene Oxide.

ACS Omega

December 2024

Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21 Jatinangor, Sumedang 45363, Indonesia.

Efforts to prevent fouling are crucial in advancing ultrafiltration (UF) membranes, especially in addressing the concentration polarization of the accumulation of dissolved dye molecules in wastewater. This study explores the impact of incorporating graphene oxide (GO) onto eggshell (ES) UF membranes regarding their permeability, rejection efficiency, and permeate flow rate. The ES-GO membranes were obtained from eggshells that were modified with varied concentrations of GO (0.

View Article and Find Full Text PDF

Mitigating Membrane Biofouling in Protein Production with Zwitterionic Peptides.

Langmuir

January 2025

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Biofouling on polymeric membranes poses a significant challenge in protein production and separation processes. We report here on the use of zwitterionic peptides composed of alternating lysine (K) and glutamic acid (E) residues to reduce biomolecular fouling on gold substrates and polymeric membranes within a protein production-mimicking environment. Our findings demonstrate that both gold chips and polymeric membranes functionalized with longer sequence zwitterionic peptides, along with a hydrophilic linker, exhibit superior antifouling performance across various protein-rich environments.

View Article and Find Full Text PDF

Unveiling the role of stratified extracellular polymeric substances in membrane-based microalgae harvesting: Thermodynamic and computational insights.

Water Res

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.

Membrane separation technology has emerged as a highly energy-efficient method for microalgae enrichment and harvesting in wastewater treatment. However, membrane fouling caused by algal cells and stratified extracellular polymeric substances (EPS) remains a critical barrier to its industrial-scale application. This study meticulously investigates the micro process of algae-derived pollutants stacking to the membrane surface affected by stratified EPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!