Major depressive disorder (MDD) is one of the most common and disabling mental disorders that characterized by profound disturbances in emotional regulation, motivation, cognition, and the physiology of affected individuals. Although MDD was initially thought to be primarily triggered through neuronal dysfunction, the pathological alterations in astrocytic function have been previously reported in MDD. We report that chronic restraint stress (CRS) induces astrocyte activation and decreases expression of astrocytic mGluR5 in the hippocampal CA1 of susceptible mice exhibited depressive-like behaviors. Reducing expression of astrocytic mGluR5 in dorsal CA1 simulates CRS-induced depressive-like behaviors and impairs excitatory synaptic function in mice, while overexpression of astrocytic mGluR5 in dorsal CA1 rescues CRS-induced depressive-like traits and excitatory synaptic dysfunction. Thus, we provide direct evidence for an important role of astrocytic mGluR5 in producing the behavioral phenotypes of MDD, supporting astrocytic mGluR5 may serve as an effective therapeutic target for MDD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2022.136766 | DOI Listing |
Elife
November 2024
Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain.
The entorhinal cortex (EC) connects to the hippocampus sending different information from cortical areas that is first processed at the dentate gyrus (DG) including spatial, limbic and sensory information. Excitatory afferents from lateral (LPP) and medial (MPP) perforant pathways of the EC connecting to granule cells of the DG play a role in memory encoding and information processing and are deeply affected in humans suffering Alzheimer's disease and temporal lobe epilepsy, contributing to the dysfunctions found in these pathologies. The plasticity of these synapses is not well known yet, as are not known the forms of long-term depression (LTD) existing at those connections.
View Article and Find Full Text PDFBrain Struct Funct
September 2024
Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
Redox Biol
July 2024
Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea; Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea. Electronic address:
Astrocytes are the major glial cells in the human brain and provide crucial metabolic and trophic support to neurons. The amyloid-β peptide (Aβ) alter the morphological and functional properties of astrocytes and induce inflammation and calcium dysregulation, contributing to Alzheimer's disease (AD) pathology. Recent studies highlight the role of Toll-like receptor (TLR) 4/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in inflammation.
View Article and Find Full Text PDFBrain Sci
April 2024
Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
Chronic opioid treatments dysregulate the glutamatergic system, inducing a hyperglutamatergic state in mesocorticolimbic brain regions. This study investigated the effects of exposure to hydrocodone overdose on locomotor activity, expression of target proteins related to the glutamatergic system, signaling kinases, and neuroinflammatory factors in the nucleus accumbens. The locomotor activity of mice was measured using the Comprehensive Laboratory Animal Monitoring System (CLAMS).
View Article and Find Full Text PDFAfferent neurons in developing sensory organs exhibit a prolonged period of burst firing prior to the onset of sensory experience. This intrinsically generated activity propagates from the periphery through central processing centers to promote the survival and physiological maturation of neurons and refine their synaptic connectivity. Recent studies in the auditory system indicate that these bursts of action potentials also trigger metabotropic glutamate receptor-mediated calcium increases within astrocytes that are spatially and temporally correlated with neuronal events; however, it is not known if this phenomenon occurs in other sensory modalities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!