A novel composite of multiwall carbon nanotube (MWCNT) supported VO quantum dots decorated BiO hybrid was prepared by the simple wet-impregnation method, and the photocatalytic performance of the prepared samples was investigated against the photodegradation of ciprofloxacin (CIP). Herein, different samples of pristine, VO/BiO and MWCNT@VO/BiO hybrid photocatalyst were prepared and systematically characterized by various physicochemical techniques. The characterization results demonstrated that the introduction of MWCNT can change the energy band gap of VO/BiO, and the band energies vary with a constituent of MWCNT@VO/BiO catalyst, in which MWCNT@VO/BiO-5 (0.05 g@0.50 g:0.50 g) has the optimal band gap energy of 2.46 eV. The photocatalytic test demonstrates that the MWCNT@VO/BiO-5 hybrid composites exhibited enhanced photocatalytic activity in CIP degradation compared to that pure and other photocatalyst and its degradation efficiency did not decrease significantly even after five cyclic experiments. The enhanced photocatalytic activity was due to the formation of heterojunction among MWCNT, VO and BiO, which distinctly improved the separation efficiency of the photogenerated charge carrier, thus increasing the degradation performance. This work gives a new approach to designing an efficient photocatalyst for contaminants degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135505 | DOI Listing |
Sci Rep
December 2024
School of Electrical Engineering, Aalto University, P.O. Box 15500, Aalto, FI-00076, Finland.
Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.
View Article and Find Full Text PDFNanoImpact
December 2024
In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK. Electronic address:
Multi-walled carbon nanotubes (MWCNTs) are a desirable class of high aspect ratio nanomaterials (HARNs) owing to their extensive applications. Given their demand, the growing occupational and consumer exposure to these materials has warranted an extensive investigation into potential hazards they may pose towards human health. This study utilised both the in vitro mammalian cell gene mutation and the cytokinesis-blocked micronucleus (CBMN) assays to investigate genotoxicity in human lymphoblastoid (TK6) and 16HBE14o human lung epithelial cells, following exposure to NM-400 and NM-401 MWCNTs for 24 h.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
Hybrid nanocomposites incorporating multiple fillers are gaining significant attention due to their ability to enhance material performance, offering superior properties compared to traditional monophase systems. This study investigates hybrid epoxy-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) and graphene nanosheets (GNs), introduced at two different weight concentrations of the mixed filler, i.e.
View Article and Find Full Text PDFHeliyon
August 2024
Department of Mathematics & Physics, North South University (NSU), Dhaka, Bangladesh.
This article investigates the convective thermal and solutal exchange from the active walls of a trapezium chamber which is filled with multi-walled carbon nanotubes (MWCNT)-silicon dioxide (SiO)-ethylene glycol-water hybrid nano-coolant. The hybrid nano-coolant exhibits non-Newtonian shear-thinning rheology and is modeled by the power-law viscosity as per an exploratory report. The convection is generated by both the thermal and solutal buoyancy forces in the presence of a magnetic field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!