The contamination of soils by mercury (Hg) seriously threatens the local ecological environment and public health. S-functionalized amendments are common remediation technology, yet, Hg re-activation often occurs in the commonly used immobilization remediation by S-functionalized amendments, resulting in an unsatisfactory remediation effect. In this study, a novel FeS-Se functionalized biochar composite (FeS-Se-BC) amendment was prepared and applied for the efficient remediation of Hg-polluted soil. An immobilization efficiency of 99.62% and 99.22% for HO-extractable Hg and TCLP solution-extractable Hg was achieved with the application of FeS-Se-BC after 180 d. The analyses of XPS, Hg-TPD, SEM-EDS demonstrated that excellent remediation performance by FeS-Se-BC resulted from the synergistic effect of FeS and Se to form HgS and HgSe concurrently. In comparison to the treatments of biochar and FeS-functionalized biochar (FeS-BC), FeS-Se-BC promoted the transformation of exchangeable, carbonate-bound, and Fe-Mn oxides-bound Hg fractions into organic material-bound, and residual fractions, effectively reducing the risk of Hg-contaminated soil from a highly dangerous level to a low risk. Furthermore, the introduction of Se clearly inhibited the re-activation of Hg and reduced the release of Hg by 81.12% compared to FeS-BC when the ratio of S to Hg was 5: 1 due to the formation of extremely stable HgSe. These results suggest that FeS-Se-BC has good potential for remediation of Hg-polluted soils which provides a new inhibitory idea for Hg re-activation after immobilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135552DOI Listing

Publication Analysis

Top Keywords

functionalized biochar
8
s-functionalized amendments
8
remediation hg-polluted
8
remediation
6
fes-se-bc
5
selenium-sulfur functionalized
4
biochar
4
biochar amendment
4
amendment mercury-contaminated
4
mercury-contaminated soil
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!