Microplastics are omnipresent in the terrestrial and aquatic environment, and are considered as a potentially serious threat to the biodiversity and ecosystem. Pollution of plastic debris and microplastics in the inland and marine environment has raised concerns in Bangladesh, which is one of the most densely populated countries in the world. This review summarizes the research progress on separation and characterization of microplastics, as well as their occurrence and sources in Bangladesh. Despite of the first total ban on plastic bags in the world introduced back in 2002, microplastics have been ubiquitously detected in the country's inland and marine environment, with the majority of them coming from secondary sources. The microplastics observed in Bangladesh were dominated by fibers, which were derived mainly from textile sources. Polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polyvinylchloride (PVC) were the most abundant polymers found for microplastics in the marine and freshwater environment of Bangladesh. Along with the identified research priorities to improve the understanding on the ecotoxicological effect and fate of microplastics, extensive and in-depth studies are required to bridge the knowledge gaps to enable comprehensive risk assessment of microplastic pollution on local ecosystems and human health, while effective management of plastic wastes and their recycling are necessary to alleviate this problem in the country.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.119697 | DOI Listing |
Environ Int
January 2025
Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, United Kingdom. Electronic address:
Antimicrobial resistance (AMR) and environmental degradation are existential global public health threats. Linking microplastics (MPs) and AMR is particularly concerning as MPs pollution would have significant ramifications on controlling of AMR; however, the effects of MPs on the spread and genetic mechanisms of AMR bacteria remain unclear. Herein, we performed Simonsen end-point conjugation to investigate the impact of four commonly used MPs on transfer of clinically relevant plasmids.
View Article and Find Full Text PDFEnviron Int
January 2025
Department of Physics, University of Girona, Campus de Montilivi, Girona 17003 Spain.
Using lock-exchange experiments, this study investigates the transport and sedimentation of microplastics (MPs) via turbidity currents. Two hypotheses were tested: MP sedimentation is influenced by suspended sediment concentration and grain size. Utilizing flows with different sediment concentrations and grain sizes in combination with three different MPs (PET fibers, melamine, and PVC fragments), the experiments revealed distinct sedimentation patterns: higher sediment concentrations enhance MP transport, and turbidity currents with finer sediments transported MPs over greater distances, highlighting the importance of sediment characteristics to predict MP distribution by such flows.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. Electronic address:
The application of organic substances to the agricultural field has effectively enhanced soil nutrient levels and crop yields. Biodegradable microplastics (bio-MPs), a pervasive emerging contaminant, may potentially impact the soil ecosystem through their aging process. Here, a 150-day dark incubation experiment was conducted to elucidate the disparities in the aging process of polylactic acid bio-MPs (PLA-MPs) in soils with contrasting C/N ratios of organic substances, as the mechanisms underlying this process remain unclear.
View Article and Find Full Text PDFWater Res
January 2025
CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:
Microplastics (MPs) in aquatic environments has been observed globally. However, the ecological risks of MP pollution in riverhead prior to highly urbanized region remain poorly understood. This study investigated MP pollution related to microbiome in sediments, and ecological risks of MPs in riverhead prior to urbanized area over 291 km of Minjiang River (MJR) in Qinghai-Tibetan Plateau (QTP).
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China. Electronic address:
Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!