As one of the most promising candidates for sodium-ion battery anodes, hard carbons suffer from inferior rate performance owing to limited ion transfer rate and sluggish electrochemical kinetics. In this work, novel carbon nanosheets (CNS) with hexagonal ordered conical macropores are prepared. The CNS has a very thin thickness of approximately 370 nm, and the conical pores are penetrated through the whole nanosheet, forming well-connected ion transport freeway. In addition, the carbon microcrystal structure and interlayer spacing can be well tailored by adjusting the carbonization temperature, thereby controlling the sodium storage behavior of carbon electrodes. These structural merits endow CNS with accelerated ion transfer, minimized ion diffusion distance and fast electrochemical kinetics. Consequently, the CNS presents superior electrochemical performance. It delivers a high reversible capacity of 298 mAh g at 0.1 A g; and after repeated charge/discharge for 500 times at 1 A g, its capacity remains 195 mA h g, with no rapid capacity loss. More importantly, CNS exhibits outstanding rate capability. Even under a very high current density of 2 A g, it still displays a large capacity of 210 mAh g, higher than most of state-of-the-art carbon anodes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.06.064DOI Listing

Publication Analysis

Top Keywords

carbon nanosheets
8
hexagonal ordered
8
ordered conical
8
conical macropores
8
sodium-ion battery
8
battery anodes
8
ion transfer
8
electrochemical kinetics
8
cns
5
engineering carbon
4

Similar Publications

Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.

View Article and Find Full Text PDF

Reducing iridium (Ir) loading while maintaining efficiency and stability is crucial for the acidic oxygen evolution reaction (OER). In this study, we develop a synthetic method of sequential electrochemical deposition and high-temperature thermal shock to produce an IrO/Ir-WO electrocatalyst with ∼1.75 nm IrO nanoparticles anchoring on Ir-doped WO nanosheets.

View Article and Find Full Text PDF

Electrocatalytic synergy from Ni-enhanced WS for alkaline overall water splitting with tuning electronic structure and crystal phase transformation.

J Colloid Interface Sci

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China. Electronic address:

Due to the limited active sites and poor conductivity, the application of tungsten disulfide (WS) in alkaline water electrolysis remains a challenge. Herein, Ni-WS nanosheet arrays were in situ grown on the carbon fiber paper (Ni-WS/CFP) as an electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, and the introduction degree of Ni can be regulated by adjusting the electrodeposition time. When the electrodeposition time is 3 min, Ni ions are doped into the lattice of WS, and by prolonging the electrodeposition time to 10 min, the nickel disulfide (NiS) crystal phase is generated to form NiS@WS heterojunction.

View Article and Find Full Text PDF

Porous carbon nanosheets integrated with graphene-wrapped CoO and CoNx as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries.

J Colloid Interface Sci

January 2025

CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. Electronic address:

The development of advanced bifunctional oxygen electrocatalysts for the oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) is crucial for the practical application of zinc-air batteries (ZABs). Herein, porous carbon nanosheets integrated with abundant graphene-wrapped CoO and CoNx (CoO/CoNx-C) were successfully fabricated through a simple one-step pyrolysis. With convenient porous channel and large accessible surface, abundant CoO/CoNx species and graphene wrapping structure, CoO/CoNx-C exhibited a half-wave potential of 0.

View Article and Find Full Text PDF

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!