The molybdenum storage protein forms and deposits distinct polynuclear tungsten oxygen aggregates.

J Inorg Biochem

Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany. Electronic address:

Published: September 2022

Some N-fixing bacteria store Mo to maintain the formation of the vital FeMo-cofactor dependent nitrogenase under Mo depleting conditions. The Mo storage protein (MoSto), developed for this purpose, has the unique capability to compactly deposit molybdate as polyoxometalate (POM) clusters in a (αβ) hexameric cage; the same occurs with the physicochemically related tungstate. To explore the structural diversity of W-based POM clusters, MoSto loaded under different conditions with tungstate and two site-specifically modified MoSto variants were structurally characterized by X-ray crystallography or single-particle cryo-EM. The MoSto cage contains five major locations for POM clusters occupied among others by heptanuclear, Keggin ion and even Dawson-like species also found in bulk solvent under defined conditions. We found both lacunary derivatives of these archetypical POM clusters with missing WO units at positions exposed to bulk solvent and expanded derivatives with additional WO units next to protecting polypeptide segments or other POM clusters. The cryo-EM map, unexpectedly, reveals a POM cluster in the cage center anchored to the wall by a WO linker. Interestingly, distinct POM cluster structures can originate from identical, highly occupied core fragments of three to seven WO units that partly correspond to those found in MoSto loaded with molybdate. These core fragments are firmly bound to the complementary protein template in contrast to the more variable, less occupied residual parts of the visible POM clusters. Due to their higher stability, W-based POM clusters are, on average, larger and more diverse than their Mo-based counterparts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2022.111904DOI Listing

Publication Analysis

Top Keywords

pom clusters
28
pom
9
storage protein
8
w-based pom
8
mosto loaded
8
bulk solvent
8
pom cluster
8
core fragments
8
clusters
7
mosto
5

Similar Publications

Multinuclear Antimony-Bismuth-Lanthanide Cluster-Connected Polyoxometalate for the Detection of 5-Hydroxyindoleacetic Acid via Luminescence.

Inorg Chem

December 2024

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.

The judicious selection and combination of multicomponents provide great potential for the further exploration of new polyoxometalate (POM) materials. Here, a delicate control on tungstate, Sb and Bi sources, Eu ions, and organic molecules led to the discovery of a novel multimetal cluster-embedded POM [HN(CH)]NaH{[Eu(HO)SbBiWO](SbWO)(SbWO)}·78HO (). The polyoxoanion of was constructed from four in situ-formed [SbWO] and [SbWO] building blocks connected by two hexa-metallic [Eu(HO)SbBiWO] clusters, to be a rare member of Sb- and Bi-coexisting POM.

View Article and Find Full Text PDF

High-Nuclearity Polyoxometalate-Based Metal-Organic Frameworks for Photocatalytic Oxidative Cleavage of C-C Bond.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China.

High-nuclearity polyoxometalate (POM) clusters are attractive building blocks (BBs) for the synthesis of metal-organic frameworks (MOFs) due to their high connectivity and inherently multiple metal centers as functional sites. This work demonstrates a strategy of step-wise growth on ring-shaped [PWO] precursor, which produced two new high-nuclearity polyoxotungstates, a half-closed [HPWO] {W} and a fully-closed [HPWO] {W}. By in situ synthesis, unique MOFs of copper triazole-benzoic acid (HL) complexes incorporating the negatively-charged {W} and {W} as nodes, {Cu(HL)W} HNPOMOF-1 and {Cu(HL)W} HNPOMOF-2, were constructed by delicately tuning the reaction conditions, mainly solution pH, which controls the formation of {W} and {W}, and at the same time the protonation of triazole-benzoic acid ligand thus its coordination mode to copper ion that creates the highest nuclearity POM-derived MOFs reported to date.

View Article and Find Full Text PDF

Enhanced Proton Conduction via Proton-Coupled Electron Transfer Reaction by a Keplerate-Type Polyoxometalate Capsule.

Inorg Chem

December 2024

Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.

Polyoxometalates (POMs), anionic metal-oxide clusters, are actively studied for their versatile structural designs and element selectivity. A series of Keplerate-type POMs with core-shell structures, known as POM capsules, that feature a Keggin-type POM core, has been reported. These POM capsules, with their neutral to negative charge and large molecular surface area, can serve as platforms for proton (H) conduction.

View Article and Find Full Text PDF

Full conversion of lignocellulose using polyoxometalate catalysts with redox sites and antagonistic acidity/basicity.

J Colloid Interface Sci

November 2024

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China. Electronic address:

The full utilization of lignocellulose involves two distinct catalytic routes: i) oxidative depolymerization of lignin and ii) acid/alkaline hydrolysis of hemicellulose and cellulose. To improve efficiency and reduce costs, constructing a single-cluster catalyst represents a desirable yet challenging strategy. Herein, triple-functional molecular polyoxometalates (POMs), NLLHVMoO (n = 1-6) were fabricated using N-lauroyl-l-lysine (NLL) and HVMoO as precursors.

View Article and Find Full Text PDF

Confinement Effects of Coordination Cages on the Synthesis and Application of Polyoxometalates.

Chemistry

November 2024

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.

The confinement effects within coordination cages present powerful tools in modern chemistry, particularly for the synthesis and manipulation of complex molecules. This concept article reviews the use of coordination cages to stabilize and tune the properties of polyoxometalates (POMs), a class of nano-sized metallic clusters, expanding the focus beyond traditional organic reactions. The article provides a brief overview of coordination cages, POM chemistry and discusses the encapsulation of POMs in coordination cages, highlighting how these cages provide a confinement effect that enhances the stability and reactivity of POMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!