Natural organic matter (NOM) and iron oxides have been proved to be crucial factors controlling the behaviors of nanoparticles in heterogenous environment. Here, we conducted experimental and modeling study on the transport of titanium dioxide nanoparticles (TiO NPs) in iron oxide-coated quartz in the presence of NOM under acidic conditions. Results showed the antagonistic effects of iron oxides and NOM on TiO NPs mobility. The inhibition of iron oxides coated on quartz was crystal form-dependent other than quantity-dependent. Amorphous ferric oxyhydroxide with higher specific surface area brought more positive charge and favorable deposition sites onto quartz, and induced more retention of nanoparticles than two crystalline iron oxides, goethite and hematite. Dissolved organic matter (DOM) facilitated TiO NPs transport in iron oxide-coated quartz. In comparation with the limited enhancing effects of DOM, the NOM coatings on media surface partially or largely offset the inhibition of goethite on nanoparticles mobility through direct occupation of attachment sites and sites screening due to the steric repulsion of the macromolecules. Owing to the higher steric hindrance, humic acid, both in dissolved and media surface-bound states, exerted stronger facilitating effects on TiO NPs mobility relative to fulvic acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129421 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFJ Proteome Res
January 2025
School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States.
() utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to , while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ.
View Article and Find Full Text PDFJ Cancer Res Ther
December 2024
Department of Interventional Ultrasound, Fifth Center of Chinese People's Liberation Army General Hospital, Beijing, China.
Objective: To examine the diagnostic efficacy of contrast-enhanced ultrasound (CEUS) with Sonazoid (Sonazoid-CEUS) for endometrial lesions.
Methods: In this prospective and multicenter study, data were collected from 84 patients with endometrial lesions from 11 hospitals in China. All the patients received a conventional US and Sonazoid-CEUS examination.
Nanomaterials (Basel)
December 2024
Unidad Departamental de Química Analítica, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain.
Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!