We verified if cocaine-induced peripheral activation might disrupt [ F]FDG brain uptake after a cocaine challenge and suggested an optimal protocol to measure cocaine-induced brain metabolic alterations in mice. C57Bl/6 male mice were injected with [ F]FDG and randomly separated into three groups. Groups 1 and 2 were kept conscious after [ F]FDG administration and after 5 min received saline or cocaine (20 mg/kg). The animals in group 1 (n = 5) were then evaluated in the open field for 30 min and those from group 2 (n = 6) were kept alone in a home cage for the same period. Forty-five minutes after [ F]FDG administration, images were acquired for 30 min. Group 3 (n = 6) was kept anesthetized and image acquisition started immediately after tracer injection, for 75 min. Saline (Day 1) or cocaine (Day 2) was injected 5 min after starting acquisition. Another set of animals (n = 5) were treated with cocaine every other day for 10 days or saline (n = 6) and were scanned with the dynamic protocol to verify its efficacy. [ F]FDG uptake increased after cocaine administration when compared to baseline only in animals kept under anesthesia. No brain effect of cocaine was observed in animals submitted to the open field or kept in the home cage. The use of anesthesia is essential to visualize cocaine-induced changes in brain metabolism by [ F]FDG PET, providing an interesting preclinical approach to investigate naïve subjects and enabling a bidirectional translational science approach for better understanding of cocaine use disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.25102 | DOI Listing |
J Alzheimers Dis
January 2025
Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.
Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.
J Cent Nerv Syst Dis
January 2025
School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.
View Article and Find Full Text PDFMol Med
January 2025
Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
Background: Chronic rhinosinusitis (CRS) is a global health issue, with some patients experiencing anxiety and depression-like symptoms. This study investigates the role of HMGB1 in anxiety and depression-like behaviors associated with the microglial Notch1/Hes-1 pathway in CRS mice.
Methods: A CRS mouse model was developed, and behavioral assessments were conducted to evaluate anxiety and depression-like behaviors.
Front Nucl Med
December 2024
Radiopharmacist, CRCI2NA-Inserm UMR1307/CNRS UMR 6075, University of Angers, Angers, France.
Sydenham's chorea is an autoimmune reaction against cerebral basal ganglia associated with rheumatic fever, caused by group A beta-hemolytic streptococcus infection. Diagnosis of this condition is difficult because of significant delay between infection onset and symptoms presentation, resulting in few positive biological tests or imaging exams. We report the case of a nine-year-old boy exhibiting hemicorporal abnormal movements with tics for whom [F]FDG PET/CT exam allowed to make the diagnosis, associated with anti-DNase B elevation.
View Article and Find Full Text PDFPhys Med Biol
January 2025
The Division of Imaging Sciences and Biomedical Engineering, King's College London, 5th Floor Becket House, London, SE1 7EH, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Multiplexed positron emission tomography (mPET) imaging allows simultaneous observation of physiological and pathological information from multiple tracers in a single PET scan. Although supervised deep learning has demonstrated superior performance in mPET image separation compared to purely model-based methods, acquiring large amounts of paired single-tracer data and multi-tracer data for training poses a practical challenge and needs extended scan durations for patients. In addition, the generalisation ability of the supervised learning framework is a concern, as the patient being scanned and their tracer kinetics may potentially fall outside the training distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!