Microvascular function is an important component in the physiology of muscle. One of the major parameters, blood perfusion, can be measured noninvasively and quantitatively by arterial spin labeling (ASL) MRI. Most studies using ASL in muscle have only reported data from a single slice, thereby assuming that muscle perfusion is homogeneous within muscle, whereas recent literature has reported proximodistal differences in oxidative capacity and perfusion. Here, we acquired pulsed ASL data in 12 healthy volunteers after dorsiflexion exercise in two slices separated distally by 7 cm. We combined this with a Look-Locker scheme to acquire images at multiple postlabeling delays (PLDs) and with a multiecho readout to measure T *. This enabled the simultaneous evaluation of quantitative muscle blood flow (MBF), arterial transit time (ATT), and T * relaxation time in the tibialis anterior muscle during recovery. Using repeated measures analyses of variance we tested the effect of time, slice location, and their interaction on MBF, ATT, and T *. Our results showed a significant difference as a function of time postexercise for all three parameters (MBF: F = 34.0, p < .0001; T *: F = 73.7, p < .0001; ATT: F = 13.6, p < .001) and no average differences between slices over the total time postexercise were observed. The interaction effect between time postexercise and slice location was significant for MBF and T * (F = 5.5, p = 0.02, F = 6.1, p = 0.02, respectively), but not for ATT (F = 2.2, p = .16). The proximal slice showed a higher MBF and a lower ATT than the distal slice during the first 2 min of recovery, and T * showed a delayed response in the distal slice. These results imply a higher perfusion and faster microvascular response to exercise in the proximal slice, in line with previous literature. Moreover, the differences in ATT indicate that it is difficult to correctly determine perfusion based on a single PLD as is commonly performed in the muscle literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787660 | PMC |
http://dx.doi.org/10.1002/nbm.4796 | DOI Listing |
Nutr Metab (Lond)
December 2024
College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China.
Objective: Impaired skeletal muscle glycogen synthesis contributes to insulin resistance (IR). Aerobic exercise reported to ameliorate IR by augmenting insulin signaling, however the detailed mechanism behind this improvement remains unclear. This study investigated whether aerobic exercise enhances glycogen anabolism and insulin sensitivity via EGR-1/PTP1B signaling pathway in skeletal muscle of rats.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Background/aim: Body weight loss (BWL) after gastrectomy for gastric cancer (GC) decreases postoperative quality of life and survival in patients with GC. This study aimed to evaluate the effect of oral nutritional supplements composed of high protein on BWL in the early period following gastrectomy.
Patients And Methods: Pre- and postoperative body weight and skeletal muscle mass were measured using bioelectrical impedance analysis in patients undergoing radical gastrectomy for GC and analyzed retrospectively.
In Vivo
December 2024
Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan;
Background/aim: Lactate is a physiologically active substance secreted by skeletal muscle that has been suggested to stimulate muscle mass gain. However, the molecular mechanism for lactate-associated muscle hypertrophy remains unclear. The purpose of the present study was to investigate whether oral administration of lactate increases muscle mass under different loading conditions.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Practical Pharmacy, Nihon Pharmaceutical University, Saitama, Japan
Background/aim: Cancer cachexia is characterized by weight loss with a specific decrease in skeletal muscle and adipose tissue. In Japan, anamorelin, which has a novel mechanism of action, was approved in 2021 for the treatment of cancer cachexia. However, little information is available on its safety in routine clinical care, in particular the occurrence of conduction defects as adverse reactions.
View Article and Find Full Text PDFPLoS One
December 2024
eVida Research Lab, Faculty of Engineering, University of Deusto, Deusto, Spain.
Background: Sarcopenia and reduced muscle quality index have garnered special attention due to their prevalence among older individuals and the adverse effects they generate. Early detection of these geriatric pathologies holds significant potential, enabling the implementation of interventions that may slow or reverse their progression, thereby improving the individual's overall health and quality of life. In this context, artificial intelligence opens up new opportunities to identify the key identifying factors of these pathologies, thus facilitating earlier intervention and personalized treatment approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!