Background: Low tidal volume and adequate positive end-expiratory pressure (PEEP) are evidence-based approaches for pediatric acute respiratory distress syndrome (pARDS), however, data are limited regarding their use since pARDS guidelines were revised in 2015.
Objective: To identify prevalence of, and factors associated with, nonadherence to appropriate tidal volume and PEEP in children with pARDS.
Methods: Retrospective cohort study of children 1 month to <18 years with pARDS who received invasive mechanical ventilation from 2016 to 2018 in a single pediatric intensive care unit (PICU).
Results: At 24 h after meeting pARDS criteria, 48/86 (56%) patients received tidal volume ≤8 ml/kg of ideal body weight and 45/86 (52%) received appropriate PEEP, with 22/86 (26%) receiving both. Among patients ≥2 years of age, a lower proportion of patients with overweight/obesity (9/25, 36%) had appropriate tidal volume versus those in the normal or underweight category (16/22, 73%, p = 0.02). When FIO was ≥50%, PEEP was appropriate in 19/60 (32%) cases versus 26/26 (100%) with FIO < 50% (p < 0.0001). pARDS was documented in the progress note in 7/86 (8%) patients at 24 h. Severity of pARDS, documentation in the progress note, and other clinical factors were not significantly associated with use of appropriate tidal volume and PEEP, however pARDS was documented more commonly in patients with severe pARDS.
Conclusions: In a single PICU in the United States, children with pARDS did not receive appropriate tidal volume for ideal body weight nor PEEP. Targets for improving tidal volume and PEEP adherence may include overweight patients and those receiving FIO ≥ 50%, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489656 | PMC |
http://dx.doi.org/10.1002/ppul.26060 | DOI Listing |
Crit Care
January 2025
LNC UMR1231, University of Burgundy and Franche-Comté, 21000, Dijon, France.
Background: Pulse pressure variation (PPV) is limited in low tidal volume mechanical ventilation. We conducted this systematic review and meta-analysis to evaluate whether passive leg raising (PLR)-induced changes in PPV can reliably predict preload/fluid responsiveness in mechanically ventilated patients with low tidal volume in the intensive care unit.
Methods: PubMed, Embase, and Cochrane databases were screened for diagnostic research relevant to the predictability of PPV change after PLR in low-tidal volume mechanically ventilated patients.
Respir Med
January 2025
Department of Pulmonology and Respiratory Medicine, Lung Center Stuttgart - Schillerhoehe Lung Clinic, affiliated to the Robert-Bosch-Hospital GmbH, Auerbachstrasse 110, 70376 Stuttgart, Germany; Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich.
Introduction: Evidence suggests that mechanical power (MP) normalized to dynamic compliance, which equals power density, may help identify prolonged ventilated patients at risk for spontaneous breathing trial (SBT) failure. This study compared MP density with traditional spontaneous breathing indexes to predict a patient's capacity to sustain a short trial of unassisted breathing.
Methods: A prospective observational study on 186 prolonged ventilated, tracheotomized patients.
Pediatr Pulmonol
January 2025
Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
Background: Infant pulmonary function testing (iPFT) in low- and middle-income countries is limited. We evaluated the early feasibility of iPFT in rural Bangladesh.
Methods: Experts established an iPFT laboratory at Zakiganj Upazila Health Complex in Sylhet, Bangladesh and trained staff.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue
December 2024
Department of Public Utilities Development, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
Objective: To explore the effects of veno-venous extra corporeal carbon dioxide removal (V-V ECCOR) on local mechanical power and gas distribution in the lungs of patients with mild to moderate acute respiratory distress syndrome (ARDS) receiving non-invasive ventilation.
Methods: Retrospective research methods were conducted. Sixty patients with mild to moderate ARDS complicated with renal insufficiency who were transferred to the respiratory intensive care unit (RICU) through the 96195 platform critical care transport green channel from January 2018 to January 2020 at the collaborative hospitals of Henan Provincial People's Hospital were enrolled.
J Cardiothorac Surg
January 2025
Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Background: Several methods for blindly positioning bronchial blockers (BBs) for one-lung ventilation (OLV) have been proposed. However, these methods do not reliably ensure accurate positioning and proper direction. Here, we developed a clinically applicable two-stage maneuver by modifying a previously reported one-stage maneuver for successful insertion of a BB at the appropriate depth and direction in patients requiring lung isolation where a flexible bronchoscope (FOB) is not applicable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!