A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrating patient symptoms, clinical readings, and radiologist feedback with computer-aided diagnosis system for detection of infectious pulmonary disease: a feasibility study. | LitMetric

Automatic computer-aided diagnosis (CAD) system has been widely used as an assisting tool for mass screening and risk assessment of infectious pulmonary diseases (PDs). However, such a system still lacks clinical acceptability and trust due to the integration gap between the patient's metadata, radiologist feedback, and the CAD system. This paper proposed three integration frameworks, namely-direct integration (DI), rule-based integration (RBI), and weight-based integration (WBI). The proposed framework helps clinicians diagnose lung inflammation and provide an end-to-end robust diagnostic system. Initially, the feasibility of integrating patients' symptoms, clinical pathologies, and radiologist feedback with CAD system to improve the classification performance is investigated. Subsequently, the patient's metadata and radiologist feedback are integrated with the CAD system using the proposed integration frameworks. The proposed method's performance is evaluated using a private dataset consisting of 70 chest X-ray (CXR) images (31 COVID-19, 14 other diseases, and 25 normal). The obtained results reveal that the proposed WBI achieved the highest classification performance (accuracy = 98.18%, F score = 97.73%, and Matthew's correlation coefficient = 0.969) compared to DI and RI. The generalization capability of the proposed framework is also verified from an external validation set. Furthermore, the Friedman average ranking and Shaffer and Holm post hoc statistical methods reveal the obtained results' statistical significance. Methodological diagram of proposed integration frameworks.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-022-02611-2DOI Listing

Publication Analysis

Top Keywords

radiologist feedback
16
cad system
16
integration frameworks
12
symptoms clinical
8
computer-aided diagnosis
8
infectious pulmonary
8
patient's metadata
8
metadata radiologist
8
feedback cad
8
proposed framework
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!