Revealing the effects of drought stress on the photosynthetic characteristics and yield of naked oats (Avena nuda L.) is significant for enhancing the productivity of oats. In this study, a potted experiment consisting of four water levels was conducted in the Bashang area of Hebei Province, China. The drought stress period was established as the continual 8 days during the jointing-heading stage. The aims were to reveal the impacts of drought stress on the photosynthetic characteristics and yield of naked oats during the critical stage. The results showed that the photosynthetic rate (P), transpiration rate (T), and stomatal conductance (G) decreased under all conditions of drought stress. The intercellular CO concentration (C) decreased under light drought stress, while it increased under moderate and severe drought stress. The initial chlorophyll fluorescence rate (F) increased by 9.03-50.92% under drought stress, and the maximum fluorescence rate (F) decreased by 8.49-19.73% under drought stress. The photochemical efficiency (F/F) increased by 10.37-24.12% under drought stress. The yields decreased by 9.5-12.7%, 16.8-27.0% and 44.1-47.7% under light, moderate and severe drought stress during the critical stage, respectively. The grains per panicle decreased by 1.7-12.5%, 8.3-24.3% and 32.7-34.2% under light, moderate and severe drought stress conditions, respectively. The 1000-grain weight decreased by 5.7-8.6%, 12.7-14.5% and 16.8-19.1% under light, moderate and severe drought stress conditions, respectively. The panicle numbers did not vary significantly among the different drought stress treatments. The photosynthetic rate, stomatal conductance and transpiration all had significant positive relationships with the yield of naked oat (P < 0.01). Parameters of PS II except for F all had significant positive relationships with the yield of naked oats (P < 0.05). This study is significant for enhancing the production efficiency of naked oat under drought stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249876 | PMC |
http://dx.doi.org/10.1038/s41598-022-15322-3 | DOI Listing |
Data Brief
February 2025
Department of Biology, Allama Iqbal Open University, Islamabad, Pakistan.
Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Chinese Materia Medica, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
The Swiss Institute for Dryland Environmental and Energy Research, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
Plants often respond to drier climates by slow evolutionary adaptations from fast-growing to stress-tolerant species. These evolutionary adaptations increase the plants' resilience to droughts but involve productivity losses that bear on agriculture and food security. Plants also respond by spatial self-organization, through fast vegetation patterning involving differential plant mortality and increased water availability to the surviving plants.
View Article and Find Full Text PDFPlant Sci
January 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China. Electronic address:
Abiotic stresses adversely impact plants survival and growth, which in turn affect plants especially crop yields worldwide. To cope with these stresses, plant responses depend on the activation of molecular networks cascades, including stress perception, signal transduction, and the expression of specific stress-related genes. Plant bZIP (basic leucine zipper) transcription factors are important regulators that respond to diverse abiotic stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!