Parameters Affecting Worst-Case Gradient-Field Heating of Passive Conductive Implants.

J Magn Reson Imaging

Division of Biomedical Physics, Center for Devices and Radiological Health, US Food and Drug Administration, Maryland, USA.

Published: October 2022

Background: Testing MRI gradient-induced heating of implanted medical devices is required by regulatory organizations and others. A gradient heating test of the ISO 10974 Technical Specification (TS) for active implants was adopted for this study of passive hip implants. All but one previous study of hip implants used nonuniform gradient exposure fields in clinical scanners and reported heating of less than 5 °C. This present study adapted methods of the TS, addressing the unmet need for identifying worst-case heating via exposures to uniform gradient fields.

Purpose: To identify gradient-field parameters affecting maximum heating in vitro for a hip implant and a cylindrical titanium disk.

Study Type: Computational simulations and experimental validation of induced heating.

Phantom: Tissue-simulating gel.

Field Strength: 42 T/s RMS, sinusoidal, continuous B fields with high spatial uniformity ASSESSMENT: Hip implant heating at 1-10 kHz, via computational modeling, validated by limited point measurements. Experimental measurements of exposures of an implant at 42 T/s for 4, 6, and 9 kHz, analyzed at 50, 100, and 150 seconds.

Statistical Tests: One sample student's t-test to assess difference between computational and experimental results. Experimental vs. computational results were not significantly different (p < 0.05).

Results: Maximum simulated temperature rise (10-minute exposure) was 10 °C at 1 kHz and 0.66 °C at 10 kHz. The ratio of the rise for 21 T/s vs. 42 T/s RMS was 4, after stabilizing at 50 seconds (dB/dt ratio squared).

Data Conclusions: Heating of an implant is proportional to the frequency of the B field and the implant's cross-sectional area and is greater for a thickness on the order of its skin depth. Testing with lower values of dB/dt RMS with lower cost amplifiers enables prediction of heating at higher values for dB/dt squared (per ISO TS) with identical frequency components and waveforms, once thermal equilibrium occurs.

Evidence Level: 1 TECHNICAL EFFICACY: Stage 1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.28321DOI Listing

Publication Analysis

Top Keywords

heating
9
hip implants
8
hip implant
8
42 t/s rms
8
values db/dt
8
parameters worst-case
4
worst-case gradient-field
4
gradient-field heating
4
heating passive
4
passive conductive
4

Similar Publications

Short-Time Preamplification-Assisted One-Pot CRISPR Nucleic Acid Detection Method with Portable Self-Heating Equipment for Point-of-Care Diagnosis.

Anal Chem

January 2025

State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China.

Infectious diseases, especially respiratory infections, have been significant threats to human health. Therefore, it is essential to develop rapid, portable, and highly sensitive diagnostic methods for their control. Herein, a short-time preamplified, one-pot clustered regularly interspaced short palindromic repeats (CRISPR) nucleic acid detection method (SPOC) is developed by combining the rapid recombinase polymerase amplification (RPA) with CRISPR-Cas12a to reduce the mutual interference and achieve facile and rapid molecular diagnosis.

View Article and Find Full Text PDF

An update on emerging pharmacological treatments for meibomian gland dysfunction.

Expert Opin Pharmacother

January 2025

Eye Clinic, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy.

Introduction: Meibomian Gland Dysfunction (MGD) represents the most common cause of dry eye disease (DED). Traditional treatments mainly rely on heating and liquifying the meibum to favor its expression. However, recent knowledge advances have led to the development of novel therapies specifically designed for patients with MGD.

View Article and Find Full Text PDF

Assessment of the impact of different SARS-CoV-2 inactivation operations on colistin sulfate plasma concentration results.

BMC Infect Dis

January 2025

Department of Cardiac Surgery, Second Hospital of Hebei Medical University, No.215 of Heping West Road,Xinhua District, Shijiazhuang, 050000, China.

Objective: To evaluate the effects of different SARS-CoV-2 inactivation methods on the blood concentration of colistin sulfate.

Methods: A colistin sulfate reference substance, a quality control plasma sample, and a clinically measured sample were transferred and heated in a 56 °C water batch for 30 min or irradiated under an ultraviolet (UV) lamp for 60 min to examine the stability of the reference solution and quality control plasma sample. Statistical analysis was conducted for the concentration of the clinically measured sample before and after inactivation with the intraclass correlation coefficient (ICC) method, the Passing-Bablok regression, and the Bland-Altman analysis.

View Article and Find Full Text PDF

Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.

View Article and Find Full Text PDF

Inkless paper made from photochromic materials has garnered significant interest owing to its potential to reduce both ink and paper pollution during production. In this research, we synthesized a dual-material film (EC-PVP/PGMEA/PMoA) and conducted a detailed investigation of its photochromic response to visible light and its microstructural properties. Initially, the film appeared as a translucent yellow, but upon exposure to visible light, it shifted to blue with a maximum absorption peak of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!