Reservoir computing is a machine learning algorithm that excels at predicting the evolution of time series, in particular, dynamical systems. Moreover, it has also shown superb performance at solving partial differential equations. In this work, we adapt this methodology to integrate the time-dependent Schrödinger equation, propagating an initial wavefunction in time. Since such wavefunctions are complex-valued high-dimensional arrays, the reservoir computing formalism needs to be extended to cope with complex-valued data. Furthermore, we propose a multi-step learning strategy that avoids overfitting the training data. We illustrate the performance of our adapted reservoir computing method by application to four standard problems in molecular vibrational dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0087785 | DOI Listing |
Nat Commun
January 2025
Neuromorphic Computing Lab, Intel, Santa Clara, CA, USA.
Reservoir computing advances the intriguing idea that a nonlinear recurrent neural circuit-the reservoir-can encode spatio-temporal input signals to enable efficient ways to perform tasks like classification or regression. However, recently the idea of a monolithic reservoir network that simultaneously buffers input signals and expands them into nonlinear features has been challenged. A representation scheme in which memory buffer and expansion into higher-order polynomial features can be configured separately has been shown to significantly outperform traditional reservoir computing in prediction of multivariate time-series.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.
This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Sustainable Energy Resources, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
Understanding the behavior of sand screens is crucial for optimizing sand control strategies and preventing wellbore failure, which can significantly impact reservoir management and production efficiency. This paper presents a comprehensive experimental and numerical modeling study on sand screen performance, aimed at providing insights prior to real-field applications. The study evaluated a 200-μm wire-wrapped screen (WWS) using slurry tests to determine the amount of sand retained, sand produced and retained permeability to assess screen efficiency.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America.
The latent viral reservoir remains the major barrier to HIV cure, placing the burden of strict adherence to antiretroviral therapy (ART) on people living with HIV to prevent recrudescence of viremia. For infants with perinatally acquired HIV, adherence is anticipated to be a lifelong need. In this study, we tested the hypothesis that administration of ART and viral Envelope-specific rhesus-derived IgG1 monoclonal antibodies (RhmAbs) with or without the IL-15 superagonist N-803 early in infection would limit viral reservoir establishment in SIV-infected infant rhesus macaques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!