A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

First-order like phase transition induced by quenched coupling disorder. | LitMetric

First-order like phase transition induced by quenched coupling disorder.

Chaos

Centre for Mathematical Sciences, Lund University, Sölvegatan 18, 221 00 Lund, Sweden.

Published: June 2022

We investigate the collective dynamics of a population of X Y model-type oscillators, globally coupled via non-separable interactions that are randomly chosen from a positive or negative value and subject to thermal noise controlled by temperature T. We find that the system at T = 0 exhibits a discontinuous, first-order like phase transition from the incoherent to the fully coherent state; when thermal noise is present ( T > 0 ), the transition from incoherence to the partial coherence is continuous and the critical threshold is now larger compared to the deterministic case ( T = 0 ). We derive an exact formula for the critical transition from incoherent to coherent oscillations for the deterministic and stochastic case based on both stability analysis for finite oscillators as well as for the thermodynamic limit ( N → ∞) based on a rigorous mean-field theory using graphons, valid for heterogeneous graph structures. Our theoretical results are supported by extensive numerical simulations. Remarkably, the synchronization threshold induced by the type of random coupling considered here is identical to the one found in studies, which consider uniform input or output strengths for each oscillator node [H. Hong and S. H. Strogatz, Phys. Rev. E 84(4), 046202 (2011); Phys. Rev. Lett. 106(5), 054102 (2011)], which suggests that these systems display a "universal" character for the onset of synchronization.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0078431DOI Listing

Publication Analysis

Top Keywords

first-order phase
8
phase transition
8
thermal noise
8
transition incoherent
8
phys rev
8
transition
4
transition induced
4
induced quenched
4
quenched coupling
4
coupling disorder
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!