Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the past few decades, several significant progresses have been made in exploring complex nonlinear dynamics and vibration suppression of conceptual aeroelastic airfoil models. Additionally, some new challenges have arisen. To the best of the author's knowledge, most studies are concerned with the deterministic case; however, the effects of stochasticity encountered in practical flight environments on the nonlinear dynamical behaviors of the airfoil systems are neglected. Crucially, coupling interaction of the structure nonlinearities and uncertainty fluctuations can lead to some difficulties on the airfoil models, including accurate modeling, response solving, and vibration suppression. At the same time, most of the existing studies depend mainly on a mathematical model established by physical mechanisms. Unfortunately, it is challenging and even impossible to obtain an accurate physical model of the complex wing structure in engineering practice. The emergence of data science and machine learning provides new opportunities for understanding the aeroelastic airfoil systems from the data-driven point of view, such as data-driven modeling, prediction, and control from the recorded data. Nevertheless, relevant data-driven problems of the aeroelastic airfoil systems are not addressed well up to now. This survey contributes to conducting a comprehensive overview of recent developments toward understanding complex dynamical behaviors and vibration suppression, especially for stochastic dynamics, early warning, and data-driven problems, of the conceptual two-dimensional airfoil models with different structural nonlinearities. The results on the airfoil models are summarized and discussed. Besides, several potential development directions that are worth further exploration are also highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0093478 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!