Stable glasses (SGs) are formed through surface-mediated equilibration (SME) during physical vapor deposition (PVD). Unlike intermolecular interactions, the role of intramolecular degrees of freedom in this process remains unexplored. Here, using experiments and coarse-grained molecular dynamics simulations, we demonstrate that varying dihedral rotation barriers of even a single bond, in otherwise isomeric molecules, can strongly influence the structure and stability of PVD glasses. These effects arise from variations in the degree of surface mobility, mobility gradients, and mobility anisotropy, at a given deposition temperature (T). At high T, flexible molecules have access to more configurations, which enhances the rate of SME, forming isotropic SGs. At low T, stability is achieved by out of equilibrium aging of the surface layer. Here, the poor packing of rigid molecules enhances the rate of surface-mediated aging, producing stable glasses with layered structures in a broad range of T. In contrast, the dynamics of flexible molecules couple more efficiently to the glass layers underneath, resulting in reduced mobility and weaker mobility gradients, producing unstable glasses. Independent of stability, the flattened shape of flexible molecules can also promote in-plane orientational order at low T. These results indicate that small changes in intramolecular relaxation barriers can be used as an approach to independently tune the structure and mobility profiles of the surface layer and, thus, the stability and structure of PVD glasses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0087600 | DOI Listing |
Environ Microbiol
January 2025
Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip "hotspot".
View Article and Find Full Text PDFMolecules
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships.
View Article and Find Full Text PDFMolecules
December 2024
College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China.
Molecules
December 2024
Department of Science and Humanities, School of Engineering and Technology, CHRIST University, Bangalore 560029, Karnataka, India.
Using the solid-state reaction technique, varied YSiO phosphors activated by europium (Eu) ions at varied concentrations were made at calcination temperatures of 1000 °C and 1250 °C during sintering in an air environment. The XRD technique identified the monoclinic structure, and the FTIR technique was used to analyze the generated phosphors. Photoluminescence emission and excitation patterns were measured using varying concentrations of Eu ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!