This paper proposes a new concept of phantom development, along with the utilization of new materials that can reproduce lung morphology and density. A lung substitute phantom using microspheres was fabricated; then, its dosimetric utility in radiotherapy was investigated, during which the density was adjusted to closely resemble the morphology of the actual human lung. Microspheres were used to reproduce alveoli, which are the main components of the lung. By changing the ratio of urethane, which is commonly used in soft tissue phantoms, to microspheres, we reproduced the density change of the lungs due to respiration. Here, we fabricated two slab-like lung substitutes to emulate commercially used phantoms. Although there is room for improvement in terms of practicality, the substitutes were easy to fabricate. Microscopic observation of the cut surface of the phantoms showed that the morphology of the phantoms mimicked the alveoli more faithfully than commercial phantoms. Furthermore, to compensate for the energy-independent mass attenuation and mass collision inhibition ability required by the tissue substitute phantom, we examined the physical properties of the phantom and confirmed that there was negligible energy dependence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0090471 | DOI Listing |
Phys Med
January 2025
Department of Physics "A. Pontremoli", University of Milan & INFN sez. Milano, Milano, Italy. Electronic address:
Purpose: This work aims at investigating, via in-silico evaluations, the noise properties of an innovative scanning geometry in cone-beam CT (CBCT): eCT. This scanning geometry substitutes each of the projections in CBCT with a series of collimated projections acquired over an oscillating scanning trajectory. The analysis focused on the impact of the number of the projections per period (PP) on the noise characteristics.
View Article and Find Full Text PDFPhys Eng Sci Med
December 2024
Department of Medical Imaging and Nuclear Medicine, Gosford Hospital, Building K3, Gosford, NSW, Australia.
Quantitative accuracy and constancy of Siemens xSPECT Bone quantitative reconstruction algorithm (xBone) can be monitored using activity-filled hollow spheres, which could be 3D printed (3DP) to increase accessibility to phantoms. One concern is that 3D prints can have air gaps in the walls which may pose issues for attenuation correction and xBone tissue zone mapping. This study assessed the feasibility of using 3DP spheres (3DP-S) with materials PLA, PETG and Resin as substitutes for commercial hollow spheres (C-S).
View Article and Find Full Text PDFMed Phys
December 2024
Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Background: A passive dosimeter framework for the measurement of dose in carbon ion beams has yet to be characterized or implemented for regular use.
Purpose: This work determined the dose calculation correction factors for absorbed dose in thermoluminescent dosimeters (TLDs) in a therapeutic carbon ion beam. TLD could be a useful tool for remote audits, particularly in the context of clinical trials as new protocols are developed for carbon ion radiotherapy.
3D Print Med
November 2024
Department of Neurosurgery, University of Leipzig Medical Center, Liebigstr.20, 04103, Leipzig, Germany.
Background: The development of phantoms to reduce animal testing or to validate new instruments or operation techniques is of increasing importance. For this reason, a blood circulation phantom was developed to test a newly designed retractor system with an integrated oxygen sensor. This phantom was used to evaluate the impact of the 3D printed blood vessel on the measurement of the oxygen saturation.
View Article and Find Full Text PDFHealth Phys
February 2025
Nuclear and Radiological Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0072.
Rapidly identifying individuals who have received internal radiation exposure above action guidelines is crucial for mitigating health risks and addressing public concerns immediately following a radiological event involving the dispersal of radioactive materials. This study describes a novel triage method using a conventional Geiger-Mueller (GM) detector to select those individuals from the large group of persons who may have received an intake of radioactive material at levels corresponding to one Clinical Decision Guide (CDG). The triage method involves placing a portable GM detector against the lower anterior torso of a sitting person as they bend over to surround the detector with their body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!