CHESS, chopper spectrometer examining small samples, is a planned direct geometry neutron chopper spectrometer designed to detect and analyze weak signals intrinsic to small cross sections (e.g., small mass, small magnetic moments, or neutron absorbing materials) in powders, liquids, and crystals. CHESS is optimized to enable transformative investigations of quantum materials, spin liquids, thermoelectrics, battery materials, and liquids. The broad dynamic range of the instrument is also well suited to study relaxation processes and excitations in soft and biological matter. The 15 Hz repetition rate of the Second Target Station at the Spallation Neutron Source enables the use of multiple incident energies within a single source pulse, greatly expanding the information gained in a single measurement. Furthermore, the high flux grants an enhanced capability for polarization analysis. This enables the separation of nuclear from magnetic scattering or coherent from incoherent scattering in hydrogenous materials over a large range of energy and momentum transfer. This paper presents optimizations and technical solutions to address the key requirements envisioned in the science case and the anticipated uses of this instrument.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0089740 | DOI Listing |
Gels
December 2024
Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain.
Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and based on N-Vinyl Caprolactam (VCL) with the aim of modulating the adhesion of non-planar cell cultures. The fabrication process is based on the use as a mold of two-layer thick water-soluble polyvinyl alcohol (PVA) previously printed by Extrusion Material (MatEx).
View Article and Find Full Text PDFStud Hist Philos Sci
December 2024
Philosophy Institute, Pontifical Catholic University of Chile, Chile. Electronic address:
Over the last two decades, the rise of the dynamicist view in the philosophy of spacetime theories has motivated a discussion about the way in which chronogeometric structure and dynamics are connected. Geometricists defend that chronogeometry determines and explains dynamics, whereas dynamicists state that it is the other way around. Both parties assume that the arrow of explanation at issue involves a claim of fundamentality and priority of one of the elements over the other.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9.
We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
Light-matter interaction is a long-standing promising topic that can be dated back to a few centuries ago and has witnessed the long-term debate between the particle and wave nature of light. In modern condensed matter physics and materials science, light usually serves as a detection tool to effectively characterize the physical and chemical features of samples. The light modulation on intrinsic properties of materials, such as atomic geometries, electronic bands, and magnetic behaviors, is more intriguing for information control and storage.
View Article and Find Full Text PDFArthroplast Today
December 2024
Department of Orthopedic Surgery, Vanderbilt University, Nashville, TN, USA.
Background: Aseptic loosening is the most common aseptic failure modality following total knee arthroplasty. Recent literature suggests that the implant-cement interface is the "weak-link" in fixation and lipid contamination may drive this debonding pattern. Therefore, the purpose of this study was to determine if the "double-butter" technique would significantly decrease lipid contamination of the tibial tray.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!