Biobased and biodegradable plastics have been intensively used in agriculture as mulching films. They provide a distinctive habitat for soil microbes, yet much less is known about the community assembly and interactions of plastisphere microbiota in soils under future climate change. For the first time, we explored the relative importance of ecological processes and the co-occurrence networks of plastic-associated microbes under ambient and future climates. The drift primarily dominated the community assembly of bacteria and fungi after 180D and 328D incubation in both climate regimes. The neutral community model prediction indicated that the migration rate of the plastisphere community in the later decay phase was lower than that in the early decay phase, contributing to the generation of the specific niches. Furthermore, future climate promoted the complexity and modularity of plastic-associated microbial networks: more competition and cooperation were observed in bacteria (or inter-kingdom) and fungi under future climate conditions, respectively. Overall, our findings strengthened the understanding of ecological processes and interplay of plastisphere microbiota during plastic biodegradation in soils under ambient and future climate regimes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157016DOI Listing

Publication Analysis

Top Keywords

future climate
20
community assembly
12
climate change
8
co-occurrence networks
8
plastisphere microbiota
8
ecological processes
8
ambient future
8
climate regimes
8
decay phase
8
future
6

Similar Publications

Current rates of habitat and biodiversity loss, and the threat they pose to ecological and economic productivity, would be considered a global emergency even if they were not occurring during a period of rapid anthropogenic climate change. Diversity at all levels of biological organization, both within and among species, and across genomes and communities, is critical for the resilience of the world's ecosystems in the face of such change. However, it remains an urgent scientific challenge to understand how biodiversity underpins these ecological outputs, how patterns of biodiversity are being affected by current threats, and how and where such biodiversity contributes most directly to human economies, well-being and social justice.

View Article and Find Full Text PDF

Food production does more damage to wild species than any other sector of human activity, yet how best to limit its growing impact is greatly contested. Reviewing progress to date in interventions that encourage less damaging diets or cut food loss and waste, we conclude that both are essential but far from sufficient. In terms of production, field studies from five continents quantifying the population-level impacts of land sharing, land sparing, intermediate and mixed approaches for almost 2000 individually assessed species show that implementing high-yield farming to spare natural habitats consistently outperforms land sharing, particularly for species of highest conservation concern.

View Article and Find Full Text PDF

Bending the curve of biodiversity loss requires a 'satnav' for nature.

Philos Trans R Soc Lond B Biol Sci

January 2025

Biodiversity Futures Lab, Natural History Museum, London SW7 5BD, UK.

Georgina Mace proposed bending the curve of biodiversity loss as a fitting ambition for the Convention on Biological Diversity. The new Global Biodiversity Monitoring Framework (GBMF) may increase the chances of meeting the goals and targets in the Kunming-Montreal Global Biodiversity Framework (KMGBF), which requires bending the curve. To meet the outcome goals of KMGBF, the GBMF should support adaptive policy responses to the state of biodiversity, which in turn requires a 'satnav' for nature.

View Article and Find Full Text PDF

Impacts of limits to adaptation on population and community persistence in a changing environment.

Philos Trans R Soc Lond B Biol Sci

January 2025

Department of Genetics, Evolution and Environment, University College London, London, UK.

A key issue in predicting how ecosystems will respond to environmental change is understanding why populations and communities are able to live and reproduce in some parts of ecological and geographical space, but not in others. The limits to adaptation that cause ecological niches to vary in position and width across taxa and environmental contexts determine how communities and ecosystems emerge from selection on phenotypes and genomes. Ecological trade-offs mean that phenotypes can only be optimal in some environments unless these trade-offs can be reshaped through evolution.

View Article and Find Full Text PDF

A global biogeographic regionalization for butterflies.

Philos Trans R Soc Lond B Biol Sci

January 2025

Department of Biology, Stanford University, Stanford, CA 94305, USA.

The partitioning of global biodiversity into biogeographic regions is critical for understanding the impacts of global-scale ecological and evolutionary processes on species assemblages as well as prioritizing areas for conservation. However, the lack of globally comprehensive data on species distributions precludes fine-scale estimation of biogeographical regionalization for numerous taxa of ecological, economic and conservation interest. Using a recently published phylogeny and novel curated native range maps for over 10 000 species of butterflies around the world, we delineated biogeographic regions for the world's butterflies using phylogenetic dissimilarity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!