Smart hypoxia-responsive transformable and charge-reversible nanoparticles for the deep penetration and tumor microenvironment modulation of pancreatic cancer.

Biomaterials

Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China. Electronic address:

Published: August 2022

The compact extracellular matrix (ECM) of pancreatic ductal adenocarcinoma (PDAC) is the major physical barrier that hinders the delivery of anti-tumor drugs, leading to strong inherent chemotherapy resistance as well as establishing an immunosuppressive tumor microenvironment (TME). However, forcibly destroying the stroma barrier would break the balance of delicate signal transduction and dependence between tumor cells and matrix components. Uncontrollable growth and metastasis would occur, making PDAC more difficult to control. Hence, we design and construct an aptamer-decorated hypoxia-responsive nanoparticle s(DGL)@Apt co-loading gemcitabine monophosphate and STAT3 inhibitor HJC0152. This nanoparticle can reverse its surficial charge in the TME, and reduce the size triggered by hypoxia. The released ultra-small DGL particles loading gemcitabine monophosphate exhibit excellent deep-tumor penetration, chemotherapy drugs endocytosis promotion, and autophagy induction ability. Meanwhile, HJC0152 inhibits overactivated STAT3 in both tumor cells and tumor stroma, softens the stroma barrier, and reeducates the TME into an immune-activated state. This smart codelivery strategy provides an inspiring opportunity in PDAC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121599DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
stroma barrier
8
tumor cells
8
gemcitabine monophosphate
8
tumor
5
smart hypoxia-responsive
4
hypoxia-responsive transformable
4
transformable charge-reversible
4
charge-reversible nanoparticles
4
nanoparticles deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!