Stress level of glucocorticoid exacerbates neuronal damage and Aβ production through activating NLRP1 inflammasome in primary cultured hippocampal neurons of APP-PS1 mice.

Int Immunopharmacol

Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China. Electronic address:

Published: September 2022

Glucocorticoid (GC), secreted by adrenal cortex, plays important roles in regulating many physiological functions, while chronic stress level of GC exposure has many adverse effects on the structure and function of hippocampal neurons, and is closely implicated to the deterioration of Alzheimer's disease (AD). Oxidative stress and neuroinflammation play an important role in the occurrence and development of AD. However, it is still unclear whether chronic GC exposure promotes beta-amyloid (Aβ) accumulation and neuronal injury by increasing oxidative stress and neuroinflammation. In this study, we investigated the effects of chronic GC exposure on NOX2-NLRP1 inflammasome activation and the protective effects of NLRP1-siRNA against GC-induced neuronal injury in primary hippocampal neurons of APP/PS1 mice. The results showed that chronic dexamethasone (DEX, 1 µM) exposure 72 h had no significant effect on the primary hippocampal neurons of WT mice, but significantly increased Aβ accumulation (2.17 ± 0.19 fold in APP group and 3.06 ± 0.49 fold in APP + DEX group over WT group) and neuronal injury in primary hippocampal neurons of APP/PS1 mice. Meanwhile, chronic DEX exposure significantly increased the levels of reactive oxygen species (ROS) production and IL-1β, and significantly up-regulated the expressions of NOX2- and NLRP1-related proteins and mRNAs in primary hippocampal neurons of APP/PS1 mice but not in WT mice. Moreover, inhibition of NLRP1 by NLRP1-siRNA treatment also significantly alleviated neuronal injury and Aβ accumulation (1.96 ± 0.11 fold in APP + DEX group and 0.25 ± 0.01 fold in APP + NLRP1-siRNA + DEX group over APP group), and down-regulated the expressions of APP, BACE1, NCSTN and p-TAU/TAU in chronic DEX-induced hippocampal neurons of APP/PS1 mice. The results suggest that chronic GC exposure can accelerate neuronal damage and Aβ production by activating oxidative stress and NLRP1 inflammasome in primary hippocampal neurons of APP/PS1 mice, resulting in deterioration of AD.And inhibition of NLRP1 inflammasome may be an important strategy in improving chronic GC-induced neuronal injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.108972DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
32
neuronal injury
20
primary hippocampal
20
neurons app/ps1
20
app/ps1 mice
20
nlrp1 inflammasome
12
oxidative stress
12
chronic exposure
12
aβ accumulation
12
mice chronic
12

Similar Publications

Very-light-intensity exercise as minimal intensity threshold for activating dorsal hippocampal neurons: Evidence from rat physiological exercise model.

Biochem Biophys Res Commun

December 2024

Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan. Electronic address:

Exercise benefits the brain, particularly the learning and memory center-the dorsal hippocampus (dHPC)-and holds promise for therapeutic applications addressing age-related cognitive deficits. While moderate-to-vigorous-intensity exercise is commonly recommended for health benefits, our translational research proposes the effectiveness of very-light-intensity exercise in enhancing cognitive functions. However, the intensity-dependent characteristics of HPC activation have yet to be fully delineated; therefore, there is no evidence of whether such easily accessible exercises for people of all ages and most fitness levels can activate HPC neurons.

View Article and Find Full Text PDF

Tau phosphorylation suppresses oxidative stress-induced mitophagy via FKBP8 receptor modulation.

PLoS One

January 2025

Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America.

Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear.

View Article and Find Full Text PDF

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Vascular cognitive impairment and dementia (VCID), resulting from chronic cerebral hypoperfusion, represent the second most prevalent form of dementia globally. Aerobic exercise is widely acknowledged as an effective intervention for various cognitive disorders. This study utilized a bilateral common carotid artery stenosis (BCAS) model to investigate whether aerobic exercise promotes cognitive recovery through the Annexin-A1 (ANXA1)/mitogen-activated protein kinase (MAPK) axis in BCAS mice.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!