Purpose Of Review: Dissect the field of antigen-specific immunotherapy (ASIT) in type 1 diabetes (T1D), highlighting the major barriers currently blocking clinical translation.
Recent Findings: ASIT remains a promising approach in T1D to re-establish the proper balance in the immune system to avoid the autoimmune-mediated attack or destruction of beta-cells in the pancreas. Despite some encouraging preclinical results, ASIT has not yet successfully translated into clinical utility, predominantly due to the lack of validated and clinically useful biomarkers.
Summary: To restore immune tolerance towards self-antigens, ASIT aims to establish a favourable balance between T effector cells and T regulatory cells. Whilst most ASITs, including systemic or oral administration of relevant antigens, have appeared safe in T1D, meaningful and durable preservation of functional beta-cell mass has not been proven clinically. Development, including clinical translation, remains negatively impacted by lack of predictive biomarkers with confirmed correlation between assay readout and clinical outcomes. To be able to address the high unmet medical need in T1D, we propose continued reinforced research to identify such biomarkers, as well efforts to ensure alignment in terms of trial design and conduct.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MED.0000000000000742 | DOI Listing |
Vaccines (Basel)
December 2024
Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia.
Preventive medicine has proven its long-term effectiveness and economic feasibility. Over the last century, vaccination has saved more lives than any other medical technology. At present, preventative measures against most infectious diseases are successfully used worldwide; in addition, vaccination platforms against oncological and even autoimmune diseases are being actively developed.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India.
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease.
View Article and Find Full Text PDFMicroorganisms
December 2024
Advanced Wound Care Research & Development, Convatec, Deeside Industrial Park, Deeside CH5 2NU, UK.
Nitric oxide (NO) is a free radical of the human innate immune response to invading pathogens. NO, produced by nitric oxide synthases (NOSs), is used by the immune system to kill microorganisms encapsulated within phagosomes via protein and DNA disruption. Owing to its ability to disperse biofilm-bound microorganisms, penetrate the biofilm matrix, and act as a signal molecule, NO may also be effective as an antibiofilm agent.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain.
Ulcerative colitis is a chronic relapsing-remitting and potentially progressive form of inflammatory bowel disease in which there is extensive inflammation and mucosal damage in the colon and rectum as a result of an abnormal immune response. MV130 is a mucosal-trained immunity-based vaccine used to prevent respiratory tract infections in various clinical settings. Additionally, MV130 may induce innate immune cells that acquire anti-inflammatory properties and promote tolerance, which could have important implications for chronic inflammatory diseases such as ulcerative colitis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by self-antibody production and widespread inflammation affecting various body tissues. This disease is driven by the breakdown of immune tolerance, which promotes the activation of autoreactive B and T cells. A key feature of SLE is dysregulation in antigen presentation, where antigen-presenting cells (APCs) play a central role in perpetuating immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!