Nutrient inputs from the atmosphere and rivers to the ocean are increased substantially by human activities. However, the effects of increased nutrient inputs are not included in the widely used CMIP5 Earth system models, which introduce bias into model simulations of ocean biogeochemistry. Here, using historical simulations by an Earth system model with perturbed atmospheric and riverine nutrient inputs, we show that the contribution of anthropogenic nutrient inputs to past global changes in ocean biogeochemistry is of similar magnitude to the effect of climate change. Anthropogenic nutrient inputs increase oceanic productivity and carbon uptake, offsetting climate-induced decrease and accelerating climate-driven deoxygenation in the upper ocean. Moreover, accounting for anthropogenic nutrient inputs improves the known carbon budget imbalance and model underestimation of the observed decrease in the global oxygen inventory. Considering the effects of both nutrient inputs and climate change is crucial in assessing anthropogenic impacts on ocean biogeochemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883367 | PMC |
http://dx.doi.org/10.1126/sciadv.abl9207 | DOI Listing |
Int Microbiol
January 2025
State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.
View Article and Find Full Text PDFISME Commun
January 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds).
View Article and Find Full Text PDFEcology
January 2025
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
Temperate streams are subsidized by inputs of leaf litter peaking in fall. Yet, stream communities decompose dead leaves and integrate their energy into the aquatic food web throughout the whole year. Most studies investigating stream decomposition largely overlook long-term trajectories, which must be understood for an appropriate temporal upscaling of ecosystem processes.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Soil Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
Potato () production requires effective nutrient and weed management strategies to enhance tuber yield and quality while minimizing the environmental impact of chemical inputs. This study investigated the effects of various weed and nutrient management practices on potato tuber yield, yield components, and quality traits. The experiments were conducted over two years (2019-2020) at the University of Kurdistan's research farm in the Dehgolan Plain, using a split-plot based on randomized complete block design with four replicates.
View Article and Find Full Text PDFPhysiol Plant
January 2025
University of Turin, Department of Agricultural, Forest and Food Science, Grugliasco, Italy.
Drought and nutrient-poor soils can increase the invasive potential of non-native species, further changing the ecosystems they invade. The high adaptability of these alien species, especially in their efficient use of resources, improves their resilience against abiotic stress. Here, we evaluated the response of the North American Quercus rubra L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!