The astigmatic interferometric particle imaging (AIPI) model reveals that the fringe orientation shifts with droplet depth displacement, and their relationships are quantitatively formulated. The depth displacement is directly evaluated from the relative angular shift of the fringes with angular cross power spectral density, and this algorithm isolates the uncertainty of droplet depth position from depth displacement. Proof-of-concept experiments on micrometer-sized transparent droplets with a 5 kHz AIPI system demonstrates that droplet three-dimensional (3D) trajectories are accurately obtained with the accuracy of depth displacement up to tens of micrometers, improving an order of magnitude from hundreds of microns in a traditional Lagrangian framework by comparing droplet depth positions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.461480DOI Listing

Publication Analysis

Top Keywords

depth displacement
20
droplet depth
16
astigmatic interferometric
8
interferometric particle
8
particle imaging
8
depth
7
displacement
5
accurate droplet
4
displacement measurement
4
measurement time-resolved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!