Flexible, fully printed immunosensors can meet the requirements of precision nutrition, but this demands optimized molecular architectures to reach the necessary sensitivity. Herein, we report on flexible and label-free immunosensor chips made with tree-like gold dendrites (AuDdrites) electrochemically formed by selective desorption of l-cysteine (-cys) on (111) gold planes. Electrodeposition was used because it is scalable and cost-effective for a rapid, direct growth of Au hyperbranched dendritic structures. The 25-hydroxyvitamin D3 (25(OH)D3) metabolite was detected within 15 min with a limit of detection (LOD) of 0.03 ng mL. This high performance was possible due to the careful optimization of the electroactive layer and working conditions for square wave voltammetry (SWV). Electrocrystallization was manipulated by controlling the deposition potential and the molar ratio between HAuCl and -cys. Metabolite detection was performed on human serum and saliva samples with adequate recovery between 97% and 100%. The immunosensors were stable and reproducible, unresponsive to interference from other molecules in human serum and saliva. They can be extended for use as wearable sensors with their mechanical flexibility and possible customization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c08381DOI Listing

Publication Analysis

Top Keywords

tree-like gold
8
gold dendrites
8
human serum
8
serum saliva
8
label-free electrochemical
4
electrochemical immunosensor
4
immunosensor tree-like
4
dendrites monitoring
4
monitoring 25-hydroxyvitamin
4
25-hydroxyvitamin metabolite
4

Similar Publications

Heat Transfer Enhancement in Tree-Structured Polymer Linked Gold Nanoparticle Networks.

J Phys Chem Lett

November 2023

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Human brains use a tree-like neuron network for information processing at high efficiency and low energy consumption. Tree-like structures have also been engineered to enhance mass and heat transfer in various applications. In this work, we reveal the heat transfer mechanism in tree-structured polymer linked gold nanoparticle (AuNP) networks using atomistic simulations.

View Article and Find Full Text PDF

Bayesian inference for phylogenetics is a gold standard for computing distributions of phylogenies. However, Bayesian phylogenetics faces the challenging computational problem of moving throughout the high-dimensional space of trees. Fortunately, hyperbolic space offers a low dimensional representation of tree-like data.

View Article and Find Full Text PDF

Omnidirectional Hydrogen Generation Based on a Flexible Black Gold Nanotube Array.

ACS Nano

September 2022

Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3168, Australia.

Solar-driven hydrogen generation is emerging as an economical and sustainable means of producing renewable energy. However, current photocatalysts for hydrogen generation are mostly powder-based or rigid-substrate-supported, which suffer from limitations, such as difficulties in catalyst regeneration or poor omnidirectional light-harvesting. Here, we report a two-dimensional (2D) flexible photocatalyst based on elastomer-supported black gold nanotube (GNT) arrays with conformal CdS coating and Pt decoration.

View Article and Find Full Text PDF

Flexible, fully printed immunosensors can meet the requirements of precision nutrition, but this demands optimized molecular architectures to reach the necessary sensitivity. Herein, we report on flexible and label-free immunosensor chips made with tree-like gold dendrites (AuDdrites) electrochemically formed by selective desorption of l-cysteine (-cys) on (111) gold planes. Electrodeposition was used because it is scalable and cost-effective for a rapid, direct growth of Au hyperbranched dendritic structures.

View Article and Find Full Text PDF

The liver is the largest gland of the gastrointestinal tract having both exocrine and endocrine functions. Developmentally it arises as a ventral outgrowth from the gut endoderm during 3rd week of intrauterine life. The foetal liver is very important because of its synthetic and hemopoietic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!