Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metasurfaces, artificially engineered surfaces comprised of subwavelength resonators, show promise for realizing a new generation of optical materials and devices. However, current metasurface architectures suffer from environmental degradation, a limited spectral range, and a lack of scalability. Here, we demonstrate a novel large-area embedded metasurface architecture that is environmentally robust and capable of a spectrally selective absorption of greater than 80% spanning from 330 to 2740 nm. These fully encapsulated metasurfaces leverage the capabilities of colloidal plasmonic nanoparticles with various crystallinities, materials, shapes, and sizes to access a larger spectral range and allow for control of nanoscale spatial losses and subsequent heat generation within the constituent elements of the metasurface. Through the selection of material, particle size, and shape, these metasurfaces can be designed across the ultraviolet (UV) to short-wave infrared (SWIR) region for various hot-electron, photodetection, photocatalysis, and photothermal processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284615 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.2c00761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!