During the growth season, northern forests in Sweden daily receive more hours of far-red (FR)-enriched light or twilight (shade) as compared to southern forests. Norway spruce (shade-tolerant) are adapted to latitudinal variation in twilight characterized by a northward increase in FR requirement to maintain growth. Shade is a stressful condition that affects plant growth and increases plant's susceptibility to pathogen attack. Lignin plays a central role in plant defense and its metabolism is regulated by light wavelength composition (light quality). In the current work, we studied regulation of lignin synthesis and defense-related genes (growth-defense trade-offs) in response to shade in Norway spruce. In most angiosperms, light promotes lignin synthesis, whereas shade decreases lignin production leading to weaker stem, which may make plants more disease susceptible. In contrast, enhanced lignin synthesis was detected in response to shade in Norway spruce. We detected a higher number of immunity/defense-related genes up-regulated in northern populations as compared to south ones in response to shade. Enhanced lignin synthesis coupled with higher defense-related gene expression can be interpreted as an adaptive strategy for better survival in northern populations. Findings will contribute to ensuring deployment of well-adapted genetic material and identifying tree families with enhanced disease resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.14387 | DOI Listing |
Food Chem (Oxf)
June 2025
College of Biology and Environment, Zhejiang Wanli University, No. 8 Qianhu South Road, Ningbo 315000, China.
Grapes are prone to softening, which limits their shelf life and suitability for long-distance transport. This study explored the molecular mechanisms underlying the effects of the chemical preservatives gibberellin (GA) and the nitric oxide donor sodium nitroprusside (SNP) on grape firmness. Enhancing grape quality, prolonging shelf life, and extending market supply were key objectives.
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Planta
January 2025
Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India.
This study seeks to improve the biomass extractability of Sorghum bicolor by targeting a critical enzyme, 4CL, through metabolic engineering of the lignin biosynthetic pathway at the post-transcriptional level. Sorghum bicolor L., a significant forage crop, offers a potential source of carbohydrate components for biofuel production.
View Article and Find Full Text PDFTransgenic Res
January 2025
Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.
View Article and Find Full Text PDFACS Catal
January 2025
Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy 27100.
Redox enzymes, mostly equipped with metal or organic cofactors, can vary their reactivity with oxygen by orders of magnitudes. Understanding how oxygen reactivity is controlled by the protein milieu remains an open issue with broad implications for mechanistic enzymology and enzyme design. Here, we address this problem by focusing on a widespread group of flavoenzymes that oxidize phenolic compounds derived from microbial lignin degradation, using either oxygen or a cytochrome c as electron acceptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!