Tall fescue is one of the primary sources of forage for livestock. It grows well in the marginal soils of the temperate zones. It hosts a fungal endophyte (), which helps the plants to tolerate abiotic and biotic stresses. The genomic and transcriptomic resources of tall fescue are very limited, due to a complex genetic background and outbreeding modes of pollination. The aim of this study was to identify differentially expressed genes (DEGs) in two tissues (pseudostem and leaf blade) between novel endophyte positive (E+) and endophyte-free (E-) Texoma MaxQ II tall fescue genotypes. Samples were collected at three diurnal time points: morning (7:40-9:00 am), afternoon (1:15-2:15 pm), and evening (4:45-5:45 pm) in the field environment. By exploring the transcriptional landscape RNA-seq, for the first time, we generated 226,054 and 224,376 transcripts from E+ and E- tall fescue, respectively through assembly. The upregulated transcripts were detected fewer than the downregulated ones in both tissues (S: 803 up and 878 down; L: 783 up and 846 down) under the freezing temperatures (-3.0-0.5°C) in the morning. Gene Ontology enrichment analysis identified 3 out of top 10 significant GO terms only in the morning samples. Metabolic pathway and biosynthesis of secondary metabolite genes showed lowest number of DEGs under morning freezing stress and highest number in evening cold condition. The 1,085 DEGs were only expressed under morning stress condition and, more importantly, the eight candidate orthologous genes of rice identified under morning freezing temperatures, including orthologs of rice phytochrome A, phytochrome C, and ethylene receptor genes, might be the possible route underlying cold tolerance in tall fescue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237612 | PMC |
http://dx.doi.org/10.3389/fpls.2022.803400 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!