In this study, we update the evaluation of the Russian GPT3 model presented in our previous paper in predicting the length of stay (LOS) in neurosurgery. We aimed to assess the performance the Russian GPT-3 (ruGPT-3) language model in LOS prediction using narrative medical records in neurosurgery compared to doctors' and patients' expectations. Doctors appeared to have the most realistic LOS expectations (MAE = 2.54), while the model's predictions (MAE = 3.53) were closest to the patients' (MAE = 3.47) but inferior to them (p = 0.011). A detailed analysis showed a solid quality of ruGPT-3 performance based on narrative clinical texts. Considering our previous findings obtained with recurrent neural networks and FastText vector representation, we estimate the new result as important but probably improveable.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI220788DOI Listing

Publication Analysis

Top Keywords

predicting length
8
length stay
8
rugpt-3 language
8
language model
8
stay neurosurgery
4
neurosurgery rugpt-3
4
model study
4
study update
4
update evaluation
4
evaluation russian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!